• Title/Summary/Keyword: synthetic ferrite

Search Result 19, Processing Time 0.036 seconds

Synthesis and Properties of Ni-Zn Ferrite by Wet-Direct Process (습식 직접 합성법에 의한 Ni-Zn Ferrite의 합성 및 물성 연구)

  • 이경희;이병하;이융걸;황우연
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.3
    • /
    • pp.225-233
    • /
    • 1991
  • In this study, we tried to find out the appropriate synthetic condition and magnetic properties of Ni-Zn ferrite {(NixZn1-x)Fe2O4} powders (where X=0, 0.1, 0.2, 0.3, ……0.9, 1). Ferrite powders were prepared by wet-direct method at 86℃ for 6hrs from FeCl36H2O, NiCl26H2O, and ZnCl2. The powders of (NixZn1-x)Fe2O4 (where X=0.4, 0.5, 0.6) have a good crystallinity, but the other ferrite powders consist of crystal and precursor ferrite. The ferrite powder's lattice constant is increased when ratio of ZnO contant is increased in the ferrite composition. And initial permeability was measured after sintering, result indicated regular pattern except (Ni0.4Zn0.6)Fe2O4 when the frequency were changed 10KHz to 10MHz.

  • PDF

Formation Reaction of Mn-Zn Ferrite by Wet Process (습식합성에 의한 Mn-Zn Ferrite의 생성반응에 관한 연구)

  • 이경희;이병하;허원도;황우연
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.1
    • /
    • pp.25-33
    • /
    • 1993
  • Formation reaction of Mn-Zn ferrite depending on various synthetic conditions of wet process was investigated using FeCl2.nH2O(n≒4), MnCl2.4H2O, ZnCl2 as starting materials. A stable intermediate precipitate was formed by the addition of H2O2. And the precipitate was hard to transform to spinel phase of Mn-Zn Fe2O4. Single phase of Mn-Zn Fe2O4 spinel was obtained above 8$0^{\circ}C$ reaction temperature. The powder had spherical particle shape and 0.02~0.05${\mu}{\textrm}{m}$ particle size. Fe(OH)2 solid solution, -FeO(OH) solid solution, -FeOOH, Mn-Zn Fe2O4 spinel were formed with air flow rate 180$\ell$/hr. However, single phase of Mn-Zn Fe2O4 spinel with cubic particle shape and 0.1~0.2${\mu}{\textrm}{m}$ particle size was formed with synthetic conditions of 8$0^{\circ}C$ and 90 munutes. The particle shape of the -FeOOH was needle-like.

  • PDF

Dependence of Structural and Magnetic Properties on Annealing Times in Co-precipitated Cobalt Ferrite Nanoparticles

  • Purnama, Budi;Rahmawati, Rafika;Wijayanta, Agung Tri;Suharyana, Suharyana
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.207-210
    • /
    • 2015
  • Modifications in the structural and magnetic properties of co-precipitated cobalt ferrite nanoparticles can be accomplished by varying the annealing time periods during the synthetic process. Experimental results show that high-purity cobalt ferrite nanoparticles are obtained using a co-precipitation process. The dependence of the crystallite sizes on the annealing time was successfully demonstrated using XRD and SEM. Finally, vibrating sample magnetometer analyses show that the magnetic properties of the cobalt ferrite nanoparticles depend on their relative particle sizes.

Preparation of Sr-Ferrite Powders by Hydrothermal (수열합성법에 의한 Sr-Ferrite 분말합성)

  • 이경희;이병하;김상규
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.1
    • /
    • pp.17-22
    • /
    • 1987
  • This study is to detect the synthetic condition for the formation of Sr-Ferrite(SrFe12O19) by hydrothermally reaction. Mixed suspension of SrCl26H2O and FeCl3 6H2O were fixed on pH and were subjected to autoclavings at various temperature(150∼300$^{\circ}C$), reaction time(2hrs.∼48hrs.). The Sr-Ferrite powders were synthesized at 150$^{\circ}C$ for 36hrs, 200$^{\circ}C$ for 4hrs and 250$^{\circ}C$ for 2hrs. Synthesized powders were increased particle sizes at longer reaction time and higher reaction temperature. It has hexagonal ferrite M-type structure and has high purity of SrO.5.6 Fe2O3 composition.

  • PDF

Characteristics of Barium Hexaferrite Nanoparticles Prepared by Temperature-Controlled Chemical Coprecipitation

  • Kwak, Jun-Young;Lee, Choong-Sub;Kim, Don;Kim, Yeong-Il
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.5
    • /
    • pp.609-616
    • /
    • 2012
  • Ba-ferrite ($BaFe_{12}O_{19}$) nanoparticles were synthesized by chemical coprecipitation method in an aqueous solution. The particle size and the crystallization temperature of the Ba-ferrite nanoparticles were controlled varying the precipitation temperature. The precipitate that was prepared at $0^{\circ}C$ showed the crystal structure of Ba-ferrite in X-ray diffraction when it was calcined at the temperature above $580^{\circ}C$, whereas what was prepared at $50^{\circ}C$ showed the crystallinity when it was calcined at the temperature higher than about $700^{\circ}C$. The particle sizes of the synthesized Ba-ferrite were in a range of about 20-30 nm when it was prepared by being precipitated at $0^{\circ}C$ and calcined at $650^{\circ}C$. When the precipitation temperature increased, the particle size also increased even at the same calcination temperature. The magnetic properties of the Ba-ferrite nanoparticles were also controlled by the synthetic condition of precipitation and calcination temperature. The coercive force could be appreciably lowered without a loss of saturation magnetization when the Ba-ferrite nanoparticles were prepared by precipitation and calcination both at low temperatures.

Preparation and Properties of Ni-Zn Ferrite by Coprecipitation Method (공침법에 의한 Ni-Zn Ferrite의 제조 및 물성연구)

  • Jung Goo Eun;Koh Jae Gui
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.338-342
    • /
    • 2004
  • Ni-Zn ferrite powder was obtained by wet method that was to be coprecipitated the metal nitrates, Fe($NO_3$)$_3$$9H_2$O, Ni($NO_3$)$_2$$6H_2$O, Zn($NO_3$)$_2$$6H_2$O to make a high permeability material. The composition of the ferrite powder was $Fe_2$$O_3$ 52 mol%, NiO 14.4 mol%, ZnO 33.6 mol%. Ni-Zn ferrite powder was compounded by precipitating metal nitrates with NaOH in vessel at the synthetic temperature of $90^{\circ}C$ for 8 hours. Calcination temperature and sintering temperature were $700^{\circ}C$ and $1150^{\circ}C$$1250^{\circ}C$, respectively, for 2 hours. And the other ferrite powder was also prepared by the wet ball milling that was to be mixed the metal oxides as same as the above chemical composition. We studied the properties of the powder and the electromagnetic characteristics of the sintered cores obtained from there two different processes. Wet direct process produced smaller particle size with narrower distribution of the size and more purified ferrite whose sintered cores had high permeability and high magnetization.

A Study of Synthesis of NiCuZn-Ferrite Sintering in Low Temperature by Metal Nitrates and its Electromagnetic Property

  • Kim, Chul Won;Koh, Jae Gui
    • Journal of Magnetics
    • /
    • v.7 no.2
    • /
    • pp.29-39
    • /
    • 2002
  • The initial NiCuZn synthetic ferrite were acquired from thermally decomposing the metal nitrates $Fe(NO_3)_39H_2O, Zn(NO_3)_26H_2O, Ni(NO_3)_26H_2O, and Cu(NO_3)_23H_2O$ at $150^circ{C}$ for 24 hours, and then we calcined the synthetic powder at $500^circ{C}$, pulverized each of those for 3, 6, 9, 12, and 15 hours in a steel ball mill, sintered each at $700^circ{C}$ to $1,000^circ{C}$ for 1 hour, and thus studied their microstructures and electromagnetic properties. We could make the initial specimens chemically bonded in liquidity at a low-temperature $150^circ{C}$, by using the low melting points less than $200^circ{C}$ of the metal nitrates instead of the mechanical ball-mill pulverization, then narrow a distance between the particles into a molecular one, and thus lower the reaction point of sintering by at least $200^circ{C}$ to $300^circ{C}$. Their initial permeability was 50 to 400 and their maximum magnetic induction density and coercive force, 2,400 G and 0.3 Oe to 0.5 Oe respectively, which was similar to those of NiZnCu ferrite synthesized in the conventional process. In the graph of initial permeability by frequencies, a $180^circ{C}$ rotation of the magnetic domains which appears in a broad band of micro-wave before and after the resonance frequency, could be perceived.

Synthetic of Magnetic Fine Powder for Oil Suspending Magnetic Fluid (자성 유체용 미분 자성 분체의 제조)

  • 이경희;이병하;이재영
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.2
    • /
    • pp.146-152
    • /
    • 1991
  • Ultra fine and homogeneous (Ni0.4Zn0.6)Fe2O4 ferrite powders were prepared by direct-wet, Hydrothermal and coprecipitation methods. In case that specific surface areas of Ni-Zn ferrite powders were over 220㎡/g, 100㎡/g, 30㎡/g individually direct-wet, hydrothermal and coprecipitation methods. The Ni-Zn ferrite magnetic fluids of which Solvents were benzene or kerosene was prepared by making cation surfactant adsorbed on the surface of the (Ni0.4Zn0.6)Fe2O4. The results that measured dispersion and viscosity by making cation surfactant adsorbed were as follows. 1. The adsorption amount of Oleric acid be proportioned the specific surface area of powders. 2. The maximum amount of Oleric acid was 36wt% of dried powders which has 220㎡/g of specific surface area. 3. The stability of fluid by direct-wet synthesis emthod in benzene or kerosene solvent excellent.

  • PDF

A Study on Synthesis and Magnetic Properties of Soft Magnetic Materials Sintered at Low Temperature (저온 소결용 연자성 물질의 합성 및 자기적 특성 연구)

  • Koh Jae Gu
    • Resources Recycling
    • /
    • v.12 no.6
    • /
    • pp.13-18
    • /
    • 2003
  • The initial NiCuZn synthetic ferrite were acquired from thermally decomposing the metal nitrates Fe($NO_3$)$_3$$9H_2$O, Zn($NO_3$)$_2$$6H_2$O, Ni($NO_3$3)$_2$$6H_2$O and Cu(NO$_3$)$_2$$3H_2$O at 1$50^{\circ}C$ for 24 hours and was calcined at $500^{\circ}C$. Each of those was pulverized for 3 and 9 hours in a steel ball mill and was sintered between $700^{\circ}C$ and $1,000^{\circ}C$ for 1 hour, and then their microstructures and magnetic properties were examined. We could make the initial specimens chemically bonded in liquid at the temperature as low as $150 ^{\circ}C$, by using the melting points less than $ 200^{\circ}C$ of the metal nitrates instead of the mechanical ball milling, then narrowed a distance between the particles into a molecular level, and thus lowed sintering temperature by at least $200 ^{\circ}C$ to $300^{\circ}C$ Their initial permeability was 50 to 490 and their saturation magnetic induction density and coercive force 2,400G and 0.3 Oe to 1.2 Oe each, which were similar to those of NiCuZn ferrite synthesized in the conventional process.