• Title/Summary/Keyword: synthetic elastomer

Search Result 16, Processing Time 0.019 seconds

Synthesis and Characterization of Alkoxy and Alkylamino GAP Copolymer for Energetic Thermoplastic Elastomer (ETPE) (에너지화 열가소성 탄성체에 사용될 수 있는 알콕시 계열과 알킬 아민 계열 GAP Copolymer의 합성 및 분석)

  • Lim, Minkyung;Jang, Yoorim;Kim, Hancheul;Rhee, Hakjune;Noh, Sitae
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.81-87
    • /
    • 2019
  • In this study, synthetic methods and physical properties for a new class of glycidyl azide polymer (GAP) were investigated for energetic thermoplastic elastomers (ETPE). Four kinds of GAP copolymer polyols were synthesized by introducing nucleophiles such as azide, alkoxide and alkyl amine into poly(epichlorohydrin) (PECH). The GAP copolymer synthetic reaction can be evaluated as an environmental benign and efficient synthetic method due to the simultaneous one-step reaction using two kinds of nucleophiles and the complete consumption of sodium azide. The relative stoichiometric substitution ratio analysis and the progress of reaction were checked and monitored by inverse gated decoupled $^{13}C$ NMR and Fourier transform infrared (FT-IR) spectroscopy. The glass transition temperature and molecular weight were measured by differential scanning calorimetry (DSC) and gel permeation chromatography (GPC) analysis. The synthesized poly($GA_{0.8}-butoxide_{0.2}$), poly($GA_{0.7}-n-butylamine_{0.3}$), poly($GA_{0.7}-dipropylamine_{0.3}$) and poly($GA_{0.7}-morpholine_{0.3}$) had a glass transition temperature ranged from -39 to $-26^{\circ}C$.

Self-healing Elastomers As Dream Smart Materials (꿈의 스마트 재료로서 자기치유 탄성체)

  • Kim, Il;Shin, Nam-Ho;Jo, Jung-Kyu;Hur, A-Young;Li, Haiqing;Ha, Chang-Sik
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.196-208
    • /
    • 2009
  • Sophisticated polymeric materials with 'responsive' properties are beginning to reach the market. The use of reversible, noncovalent interactions is a recurring design principle for responsive materials. Recently developed hydrogen-bonding units allow this design principle to be taken to its extreme. Supramolecular polymers, where hydrogen bonds are the only force keeping the monomers together, form materials whose (mechanical) properties respond strongly to a change in temperature or solvent. In this review, we describe some examples of hydrogen-bonded supramolecular polymers that can be utilized for self-healing materials. Synthesis of a rubber-like material that can be recycled might not seem exciting. But one that can also repeatedly repair itself at room temperature, without adhesives, really stretches the imagination. Autonomic healing materials respond without external intervention to environmental stimuli in a nonlinear and productive fashion, and have great potential for advanced engineering systems.

Synthesis of Multi Hydroxyl Chain-End Functionalized Polyolefin Elastomer with Poly(t-butylstyrene) Graft (Poly(t-butylstyrene) 그라프트를 가지는 수산기 말단 관능화 폴리올레핀 탄성체의 합성)

  • Lee, Hyoung Woo;Cho, Hee Won;Lee, Sang Min;Park, Sat Byeol;Kim, Dong Hyun;Lee, Bum Jae
    • Elastomers and Composites
    • /
    • v.48 no.1
    • /
    • pp.10-17
    • /
    • 2013
  • Polyolefin-g-poly(t-butylstyrene) as one of the high-temperature polyolefin-based thermoplastic elastomers was synthesized by the graft-from anionic living polymerization from the styrene moieties of the linear poly(ethylene-ter-1-hexene-ter-divinylbenzene) as a soft block to form the hard end blocks, poly(t-butylstyrene). The chemistry of the anionic graft-from polymerization involved complete lithiation of the pendant styrene unit of the soft polyolefin elastomer with sec-BuLi/TMEDA followed by the subsequent graft anionic polymerization of 4-tert-butylstyrene with Mn=10,000~30,000 g/mol. The graft-from living anionic polymerization were very effective and the grafting size increased proportionally with increasing monomer concentration and the reaction times. The synthetic methodology for the multi-hydroxyl chain-end modified polyolefin-g-poly(t-butylstyrene) was proposed by using the thiol-ene click reaction between 2-mercaptoethanol and the polyolefin-g-[poly(t-butylstyrene)-b-high vinyl polyisoprene], which was obtained from the subsequent living block copolymerization using polyolefin-g-Poly(t-butylstyrene) with isoprene. The result indicated that this process produced a new well-defined functionalized graft-type polyolefin-based TPE with high $T_g$ hard block(> $145^{\circ}C$).

Advanced Synthetic Technology for High Performance Energy Tire Tread Rubber (고성능 에너지 절약형 타이어 트레드 고무의 합성 제조 기술)

  • Lee, Bum-Jae;Lim, Ki-Won;Ji, Sang-Chul;Jung, Kwon-Young;Kim, Tae-Jung
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.232-243
    • /
    • 2009
  • The specialized and diversified synthetic and compounding technologies are used to meet the requirements for the advanced high performance tire tread materials with better balance of fuel economy(rolling resistance), safety(wet traction) and wear resistance. These techniques involve the methodology for the improvement of chemical and physical interaction between filler and the rubber matrix using coupling agents as well as a variety of chemically-modified solution SBRs. The research trends about the high performance functional SBRs and coupling agents which can interact with the surface of fillers and their working mechanism were investigated in the conventional carbon black-filled rubber and silica-filled SBR systems developed recently as "green tire".

Synthesis, Characterization and Haemocompatibility of Poly(styrene-b-isobutylene-b-styrene) Triblock Copolymers (폴리(스티렌-이소부틸렌-스티렌) 삼중블록 공중합체의 합성, 분석 및 혈액적합성)

  • Ren, Ping;Wu, Yi-Bo;Guo, Wen-Ii;Li, Shu-Xin;Mao, Jing;Xiao, Fei;Li, Kang
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.40-46
    • /
    • 2011
  • The synthesis of well-defined poly(styrene-b-isobutylene-b-styrene) (SIBS) triblock copolymers was accomplished by cationic sequential block copolymerization of isobutylene (IB) with styrene (St) using 1,4-di(2-chloro-2-propyl) benzene (DCC) /$TiCl_4$/2,6-di-tert-butylpyridine(DtBP) as an initiating system in methyl chloride ($CH_3Cl$)/methylcyclohexane(MeChx) (50/50 v/v) solvent mixture at $-80^{\circ}C$. The triblock copolymers exhibited excellent thermoplastic and elastomeric characteristics. Tensile strengths and Shore hardness increased with increasing polystyrene (PS) content, while elongation at break decreased. The blood-compatibility of SIBS was assessed by SEM observation of the platelet adhesion, blood clotting time and haemolysis ratio. The haemolysis ratios were below 5% which met the medical materials standard. The platelet adhesion test further indicated that SIBS block copolymers had a good blood compatibility.

Synthesis of Monomers for Polyamide-type TPEs from Oleic Acid (천연 올레인산 기반 폴리아미드계 TPEs 단량체 합성)

  • Koh, Moo-Hyun;Kim, Hyun Su;Kim, Hyeonjeong;Shin, Nara;Yoo, Dongwon;Kim, Young Gyu
    • Elastomers and Composites
    • /
    • v.48 no.1
    • /
    • pp.24-29
    • /
    • 2013
  • We have developed the synthetic processes for the monomers of polyamide-type TPEs (thermoplastic elastomers, TPAEs) obtained from vegetable oil. TPAEs have several superior physical properties to those of thermoplastic elastomers (TPEs). From the common starting material, oleic acid, which is commonly found in various vegetable oils, we have synthesized three ${\omega}$-amino acid monomers ($C_9$, $C_{10}$ and $C_{11}$ ${\omega}$-amino acid) and three ${\alpha}$, ${\omega}$-dicarboxylic acids($C_9$, $C_{10}$ and $C_{11}$ ${\alpha}$, ${\omega}$-dicarboxylic acid) for TPAEs in good yields.