• Title/Summary/Keyword: synthesis of $MgB_2$

Search Result 138, Processing Time 0.029 seconds

Proteasome Inhibitor-Induced IκB/NF-κB Activation is Mediated by Nrf2-Dependent Light Chain 3B Induction in Lung Cancer Cells

  • Lee, Kyoung-Hee;Lee, Jungsil;Woo, Jisu;Lee, Chang-Hoon;Yoo, Chul-Gyu
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1008-1015
    • /
    • 2018
  • $I{\kappa}B$, a cytoplasmic inhibitor of nuclear factor-${\kappa}B$ ($NF-{\kappa}B$), is reportedly degraded via the proteasome. However, we recently found that long-term incubation with proteasome inhibitors (PIs) such as PS-341 or MG132 induces $I{\kappa}B{\alpha}$ degradation via an alternative pathway, lysosome, which results in $NF-{\kappa}B$ activation and confers resistance to PI-induced lung cancer cell death. To enhance the anti-cancer efficacy of PIs, elucidation of the regulatory mechanism of PI-induced $I{\kappa}B{\alpha}$ degradation is necessary. Here, we demonstrated that PI up-regulates nuclear factor (erythroid-derived 2)-like 2 (Nrf2) via both de novo protein synthesis and Kelch-like ECH-associated protein 1 (KEAP1) degradation, which is responsible for $I{\kappa}B{\alpha}$ degradation via macroautophagy activation. PIs increased the protein level of light chain 3B (LC3B, macroautophagy marker), but not lysosome-associated membrane protein 2a (Lamp2a, the receptor for chaperone-mediated autophagy) in NCI-H157 and A549 lung cancer cells. Pretreatment with macroautophagy inhibitor or knock-down of LC3B blocked PI-induced $I{\kappa}B{\alpha}$ degradation. PIs up-regulated Nrf2 by increasing its transcription and mediating degradation of KEAP1 (cytoplasmic inhibitor of Nrf2). Overexpression of dominant-negative Nrf2, which lacks an N-terminal transactivating domain, or knock-down of Nrf2 suppressed PI-induced LC3B protein expression and subsequent $I{\kappa}B{\alpha}$ degradation. Thus, blocking of the Nrf2 pathway enhanced PI-induced cell death. These findings suggest that Nrf2-driven induction of LC3B plays an essential role in PI-induced activation of the $I{\kappa}B$/$NF-{\kappa}B$ pathway, which attenuates the anti-tumor efficacy of PIs.

Synthesis of 6-[1-[4-(Benzoxazol-2-yl)thiobuthyl]-1,2,3-triazole-4-yl]methylenepenam as ${\beta}$-Lactamase Inhibitors

  • Im, Chae-Uk;Yim, Chul-Bu;Oh, Jung-Suk;Yoon, Sang-Bae
    • Archives of Pharmacal Research
    • /
    • v.20 no.6
    • /
    • pp.647-651
    • /
    • 1997
  • The 6, 6-dibromopenam 6 was treated with $CH_{3}/MgBr$ and carbaldehyde 5 to afford the 6-bromo-6-(1-hydroxy-1-methyl)penicillanate 7, which was reacted with acetic anhybride to give acetoxy compound 8. The deacetobromination of 8 with zinc and acetic acid gave 6-exomethylenpenams, Z-isomer 9 and E-isomer 10, which were oxidized to sulfones 11 and 12 by m-CPBA. The p-methoxybenzyl compounds were deprotected by $AlCl_{3}$ and neutralized to give the sodium salts 13, 14, and 15.

  • PDF

Inducible nitric oxide synthase is involved in neuronal death induced by trimethyltin in the rat hippocampus (Trimethyltin에 의한 랫드 해마의 신경세포 사멸과 iNOS의 연관성)

  • Jang, Sukwon;Choi, Sungyoung;Park, Changnam;Ahn, Meejung;Shin, Taekyun;Kim, Seungjoon
    • Korean Journal of Veterinary Research
    • /
    • v.51 no.3
    • /
    • pp.185-191
    • /
    • 2011
  • Trimethyltin chloride (TMT) has been used as a neurotoxin for inducing brain dysfunction and neuronal death. Neuronal death in the hippocampus by TMT may generate excessive nitric oxide, but there are few studies about nitric oxide synthase enzyme involved in the synthesis of nitric oxide. The purpose of present study is to analyze the TMT toxicity in each region of rat hippocampus. To evaluate the involvement of nitric oxide, we analyzed the effects of aminoguanidine known as a selective inhibitor for inducible nitric oxide synthase on behavioral changes and the hippocampus of rat by TMT toxicity. 6-week-old male Sprague-Dawley rats were administered with a single dose of TMT (8 mg/kg b.w., i.p.) and the control group was similarly administered with distilled water. TMT + aminoguanidine-treated groups were administered with aminoguanidine (10 mg/kg or 100 mg/kg b.w., i.p.) for 3 days prior to TMT injection. The rats were sacrificed 2 days after TMT administration. In the TMT-treated group, a number of cell losses were seen in CA1, CA3 and the dentate gyrus. In the TMT + aminoguanidine-treated group, neuronal death was seen in CA1 and CA3, but reduced in the dentate gyrus compared to the TMT-treated group. Western blot analysis showed that cleaved caspase-3 expression was increased in the TMT-treated group compared to the control group. However, the expression significantly declined in the TMT + aminoguanidine-treated group. The present findings suggest that inducible nitric oxide synthase is involved in neuronal death induced by TMT.

Facile synthesis of ZnBi2O4-graphite composites as highly active visible-light photocatalyst for the mineralization of rhodamine B

  • Nguyen, Thi Mai Tho;Bui, The Huy;Dang, Nguyen Nha Khanh;Ho, Nguyen Nhat Ha;Vu, Quang Huy;Ngo, Thi Tuong Vy;Do, Manh Huy;Duong, Phuoc Dat;Nguyen, Thi Kim Phuong
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2442-2451
    • /
    • 2018
  • Novel highly active visible-light photocatalysts in the form of zinc bismuth oxide ($ZnBi_2O_4$) and graphite hybrid composites were prepared by coupling via a co-precipitation method followed by calcination at $450^{\circ}C$. The asprepared $ZnBi_2O_4$-graphite hybrid composites were tested for the degradation of rhodamine B (RhB) solutions under visible-light irradiation. The existence of strong electronic coupling between the two components within the $ZnBi_2O_4$-graphite heterostructure suppressed the photogenerated recombination of electrons and holes to a remarkable extent. The prepared composite exhibited excellent photocatalytic activity, leading to more than 93% of RhB degradation at an initial concentration of $50mg{\cdot}L^{-1}$ with 1.0 g catalyst per liter in 150 min. The excellent visible-light photocatalytic mineralization of $ZnBi_2O_4-1.0graphite$ in comparison with pristine $ZnBi_2O_4$ could be attributed to synergetic effects, charge transfer between $ZnBi_2O_4$ and graphite, and the separation efficiency of the photogenerated electrons and holes. The photo-induced $h^+$ and the superoxide anion were the major active species responsible for the photodegradation process. The results demonstrate the feasibility of $ZnBi_2O_4-1.0graphite$ as a potential heterogeneous photocatalyst for environmental remediation.

Melanogenesis Inhibitory and Antioxidant Activities of Phellinus baumii Methanol Extract (장수진흙버섯 메탄올 추출물의 멜라닌 생성 저해작용)

  • Lee, J.S.;Shin, D.B.;Lee, S.M.;Kim, S.H.;Lee, T.S.;Jung, D.C.
    • The Korean Journal of Mycology
    • /
    • v.41 no.2
    • /
    • pp.104-111
    • /
    • 2013
  • Phellinus baumii is a medicinal mushroom used in Asian countries for a long period of time. The purpose of this study was to investigate the skin whitening activities of methanol extracts from fruiting bodies of P. baumii. To evaluate the antioxidant activities of the extract, polyphenol and flavonoid contents, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity and chelating activity on ferrous ions were studied. For assay of skin whitening activities, tyrosinase and DOPA inhibitory activities, and tyrosinase and melanin synthesis inhibitory activities of B16/F10 melanoma cells treated with the methanol extract were investigated. The total polyphenol content of P. baumii methanol extract was 4.19. DPPH scavenging ability of P. baumii methanol extract was 88.26% in $25{\mu}g/mL$ concentration. We tested tyrosinase inhibitory activity and melanin contents in melanoma cells. The tyrosinase activity was inhibited to 65.17% at the concentration of $125{\mu}g/mL$ and melanin synthesis was inhibited to 57.61% at the concentration of $25{\mu}g/mL$. Overall, the experimental results showed that P. baumii methanol extract had inhibitory activities of tyrosinase and melanin synthesis by dose dependent manner in B16/F10 melanoma cells. Strong ultra-violet absorption spectra in the range of 270~370 nm indicated that ethanol extract of P. baumii could protect the skin from UV. Therefore, P. baumii methanol extract might be used for development of skin whitening, anti-UV and skin care agents.

Lipase-Catalyzed Synthesis of Structured Lipids with Capric and Conjugated Linoleic Acid in a Stirred-Batch Type Reactor (대두유로부터 Lipase를 이용한 재구성 지질의 합성 및 특성)

  • 신정아;이기택
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.7
    • /
    • pp.1175-1179
    • /
    • 2004
  • Structured lipid (SL) was produced from soybean oil with molar ratio of 1:2:2 (soybean oil:capric acid:CLA) using Chirazyme L-2 lipase (4% by weight of total substrates). The reaction was conducted for 24 hr at 55$^{\circ}C$ in a 1 L stirred-batch type reactor. SL-soybean oil contained 4.9 mol% capric acid and 4.1 mol% CLA, respectively. Iodine value of SL-soybean oil was reduced than that of soybean oil due to the incorporated capric acids. Tocopherol content in SL-soybean oil was 18.2 mg/l00 g. SL-soybean oil appeared more yellowish color than soybean oil. Reverse-phase HPLC showed that SL-triacylglycerol species containing capric acid consisted of about 12.6 area%.

Ginsenoside Rd inhibits the expressions of iNOS and COX-2 by suppressing NF-κB in LPS-stimulated RAW264.7 cells and mouse liver

  • Kim, Dae Hyun;Chung, Jae Heun;Yoon, Ji Sung;Ha, Young Mi;Bae, Sungjin;Lee, Eun Kyeong;Jung, Kyung Jin;Kim, Min Sun;Kim, You Jung;Kim, Mi Kyung;Chung, Hae Young
    • Journal of Ginseng Research
    • /
    • v.37 no.1
    • /
    • pp.54-63
    • /
    • 2013
  • Ginsenoside Rd is a primary constituent of the ginseng rhizome and has been shown to participate in the regulation of diabetes and in tumor formation. Reports also show that ginsenoside Rd exerts anti-oxidative effects by activating anti-oxidant enzymes. Treatment with ginsenoside Rd decreased nitric oxide and prostaglandin $E_2$ ($PGE_2$) in lipopolysaccharides (LPS)-challenged RAW264.7 cells and in ICR mouse livers (5 mg/kg LPS; LPS + ginsenoside Rd [2, 10, and 50 mg/kg]). Furthermore, these decreases were associated with the down-regulations of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 and of nuclear factor (NF)-${\kappa}B$ activity in vitro and in vivo. Our results indicate that ginsenoside Rd treatment decreases; 1) nitric oxide production (40% inhibition); 2) $PGE_2$ synthesis (69% to 93% inhibition); 3) NF-${\kappa}B$ activity; and 4) the NF-${\kappa}B$-regulated expressions of iNOS and COX-2. Taken together, our results suggest that the anti-inflammatory effects of ginsenoside Rd are due to the down-regulation of NF-${\kappa}B$ and the consequent expressional suppressions of iNOS and COX-2.

Mammary Performance of First Lactation Bali Cows (Bibos banteng) Fed Grass-Legume Based Diets in Relation to the Role of Glucose

  • Sukarini, I.A.M.;Sastradipradja, Djokowoerjo;Nusada, N.;Mahardika, I.G.;Kiranadi, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.5
    • /
    • pp.615-623
    • /
    • 2001
  • A study of mammary function in relation to glucose metabolism of first lactation Bali cows on grass-legume diets was carried out using 12 primiparous cows (initial BW $263.79{\pm}21.66kg$) for 16 weeks starting immediately post calving. The animals were randomly allocated into 4 dietary treatment groups R1, R2, R3 and R4, receiving from the last 2 months of pregnancy onwards, rations based on a mixture of locally available grass and legume feed ad libitum. On a DM basis R1 contained 70% elephant grass (PP, Penicetum purpureum) plus 30% Gliricidia sepia leaves (GS), R2 was 30% PP plus 25% GS supplemented with 55% Hibiscus tilliacius leaves (HT, defaunating effect), R3 and R4 were 22.5% PP+41.25% GS+11.25% HT+25% concentrate, with R4 supplemented with zinc-diacetate. TDN, CP and zinc contents of the diets were 58.2%, 12.05% and 18.3 mg/kg respectively for R1, 65.05%, 16.9% and 25.6 mg/kg respectively for R2, 66.03%, 16.71% and 29.02 mg/kg respectively for R3 and 66.03%, 16.71% and 60.47 mg/kg respectively for R4. Milk production and body weights were monitored, an energy and protein balance trial conducted, overall glucose kinetics parameters assessed, mammary blood flow (MBF) and metabolite arteriovenous differences (${\Delta}AVs$) measured to get uptake data and mammary performance relationships. Parameters of glucose kinetics at peak lactation or during dry condition were not affected by ration quality. Glucose pool size, space of distribution and flux increased by 61.77, 62.26 and 82.08%, respectively, during lactation compared to the dry period. Mean glucose flux of lactating Bali cows was $5.52mg/min.kgBW^{0.807}$ which resembles the range of values of temperate dairy cows. Calculation showed that glucose requirements for maintenance, milk lactose and fat-glycerol synthesis, and the formation of NADPH reached 461.69 g for a yield of 1 kg/d or equal to 320.62 mg/min, which was less than the average glucose flux of lactating Bali cows of 481.35 mg/min. Mammary blood flow (MBF) values ranged from 56 to 83 l/h for the different treatments and the ratio MBF per kg milk produced improved from av. 1540 l/kg for R1 to av. 967 l/kg for R4 treated cows. Mammary glucose uptake ranged from 6.27 to 12.03 g/h or 120 to 140 g/kg milk. Glucose uptake was mass-wise 2 to 4 times the amount secreted as lactose, which indicated values less than the calculated mammary glucose needs and that little lactose was synthesized. The excess glucose taken-up was used for other metabolic processes. Linear relationships between metabolite ${\Delta}AVs$ and arterial blood plasma concentration [A] showed that in Bali cows triglycerides (TG), phenylalanine (Phe) and tyrosine (Tyr) have high coefficients of determination, i.e. 0.77, 0.81 and 0.69, respectively. For glucose, the relationship is quadratic with an $R^2$ value of 0.49. It was concluded that lactose synthesis was inadequate, which led to a speculation that milk yield could be improved by increased lactose synthesis.

Antioxidant and skin whitening effects of Inonotus obliquus methanol extract (차가버섯 메탄올 추출물의 항산화 및 미백효과)

  • Guk, Min-Hee;Kim, Dong-Ha;Lee, Chan;Jeong, Eun-Seon;Choi, Eun-Jae;Lee, Jae-Seong;Lee, Tae-Soo
    • Journal of Mushroom
    • /
    • v.11 no.2
    • /
    • pp.99-106
    • /
    • 2013
  • This study was initiated to investigate the skin whitening activities of methanol extracts from fruiting bodies of I. obliquus. The total polyphenols and flavonoids contents of I. obliquus methanol extracts were 31.85 mg/g and 28.33 mg/g, respectively. The methanol extract of the mushroom treated on B16/F10 melanoma and NIH3T3 cell lines did not show cytotoxic activity. 2,2-diphenyl-1-picrylhydrazyl(DPPH) free radical scavenging activity and chelating activity on ferrous ions of I. obliquus methanol extract were lower than those of positive control, tocopherol and BHT. The tyrosinase and L-DOPA inhibitory activities of the extract were lower than those of positive control, kojic acid and ascorbic acid. The tyrosinase and melanin synthesis inhibitory activities of the melanoma cells treated with the extract were comparable with positive control, arbutin. The experimental results suggested that methanol extract of I. obliquus contained inhibitory activities of tyrosinase and melanin synthesis in the B16/F10 melanoma cells by dose dependent manner. High ultra-violet absorption spectra in the range of 280-350 nm showed that I. obliquus extract could protect skin from UV radiation damage. Therefore, fruiting bodies of I. obliquus can be used for developing skin whitening, anti-UV and skin care agents.

Studies on the Ginseng Plants(III) -Radioactive Sodium $Acetate-U-C^{14}$ Feeding Experiments- (인삼식물(人參植物)에 관한 연구(III) -동위원소화합물(洞位元素化合物) Sodium $Acetate-U-C^{14}$을 투여한 실험-)

  • Kim, Jung-Yun;Staba, E. John
    • Korean Journal of Pharmacognosy
    • /
    • v.5 no.2
    • /
    • pp.111-124
    • /
    • 1974
  • The radioactive compound sodium $acetate-U-C^{14}\;(C^{14}-acetate)$ was administered to two- and four-year-old July and September American ginseng (Araliaceae, Panax quinquefolium L.) plants and cuttings. The $C^{14}-acetate$ uptake was approximately 99%. The autoradiochromatograms suggest that the saponins isolated by preparative thin-layer chromatography contained impurities, especially those isolated from the leaf and stem extracts. The root and fruit methanol extracts yielded relatively pure saponins. The large amounts of panaquilin B and its proximity to panaquilin C on preparative thin-layer plates resulted in some admixing. The average concentration (% plant dry weight) of semi-purified saponins were high in the leaves (13.8%), as compared to fruits (9.8%), stems (7.9%) and roots (6.3%). The average percentage of $C^{14}-acetate$ incorporation into panaquilins was 4.8%. The average percentage of $C^{14}-acetate$ incorporation into panaquilins B and C was higher (1.40% and 1.13%, respectively) than that into panaquilins C, (d), G-1 and G-2 (0.75%, 0.65%, 0.13% and 0.53%, respectively). Panaquilin synthesis may be depending upon the part, collection period and age of the plant. The average percentage of $C^{14}-acetate$ incorporation into panaquilin B is high in roots (0.58%) and stems (0.48%); that into panaquilins C and (d) high in leaves (0.40% and 0.45%, respectively); and that into panaquilin E high in roots and leaves (0.55% and 0.50%, respectively). Panaquilin G-2 was synthesized in all parts of plants. The panaquilins appear to be biosynthesized more actively in July than September (exception-panaquilin G-1). Panaquilins B, C and G-1 may be biosynthesized more actively in four-year-old plants and panaquilins (d) and E more actively in two-year-old plants. The results from expectance with cuttings suggest that the panaquilins are synthesized de novo in the above-ground parts of ginseng plants, and that panaquilin G-1 may be synthesized de novo in the leaf. It is known from the tissue culture studies that panaquilins are produced by leaf, stem and root callus tissues and cailus-root cultures of American and Korean ginseng plants. Panaquilins may actively be synthesized de novo in most any cell or organ of the ginseng plants. It was verified that $C^{14}-acetate$ was incorporated into the panaxadiol portions of the panaquilins of two-year-old plants (sp. act. 0.56 mmcCi/mg) and four-year-old plants $(sp.\;act.\;0.54\;m{\mu}Ci/mg)$.

  • PDF