• 제목/요약/키워드: synonym extraction

검색결과 11건 처리시간 0.296초

"동의보감"에 기재된 인체 용어 관계를 이용한 검색효율성 향상 방법 (Method for improving search efficiency using relation of anatomical structure from Donguibogam(東醫寶鑑))

  • 송인우;이병욱
    • 대한한의학원전학회지
    • /
    • 제25권4호
    • /
    • pp.105-113
    • /
    • 2012
  • Objectives : Acquiring information from symptoms is one of the important method to gain clinically available information in korean medicine. Therefore, up to now, study of symptom terms was frequently implemented in promotion of various information project. In data extraction methods using symptom information from DB, information search using synonym and method using ontology is studied and utilized. However, considering concept of symptom has essential information of appeared body area and phenomenon we think that extending synonym and ontology relationship in symptom terms can be useful for search and set to this study. Methods : We collect terms relevant to human body area and structure described in Donguibogam. Synonymous relationship between collected terms is organized. Relationship between collected terms is build to human-body-knowledge table which has form of Concept+Relation+Concept. Type of relationship is limited on a range of expressing content about parts of human body. Result & Conclusion : Search condition is generated automatically using relationship of the upper area in knowledge table contents. Information of next and previous acupuncture point, upper and lower acupuncture point, left and right acupuncture point can be searched using information of acupuncture point location, order, relative position in area, direction in knowledge table contents.

자동요약의 주제어 추출을 위한 의미사전의 동적 확장 (Dynamic Expansion of Semantic Dictionary for Topic Extraction in Automatic Summarization)

  • 추교남;우요섭
    • 전기전자학회논문지
    • /
    • 제13권2호
    • /
    • pp.241-247
    • /
    • 2009
  • 본 논문에서는 자동문서요약 시스템에서 정확하고 실용적인 주제어 추출을 위하여 한국어의 의미론적 특성을 고려한 의미사전의 확장 방법론에 대하여 논하고자 한다. 첫째로 동의어 사전을 통하여 의미표지 분석의 정확도를 높이고자 한다. 둘째로 하위범주화사전에 가중치를 부여하여 구문과 의미 분석에서 가장 올바른 분석 결과를 결정하는 참조 정보로 활용하고자 한다. 셋째로 미등록 용언의 하위범주화패턴 예측을 통하여 한국어에서 접사 파생되는 용언에 대하여 원활한 의미 분석을 수행할 수 있도록 한다.

  • PDF

병렬말뭉치를 이용한 대체어 자동 추출 방법 (Automatic Extraction of Alternative Words using Parallel Corpus)

  • 백종범;이수원
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권12호
    • /
    • pp.1254-1258
    • /
    • 2010
  • 정보 검색에 있어서 통일 객체를 다양한 표기로 기술하는 문제는 시스템의 성능을 저하시키는 요인이 된다. 본 연구에서는 이러한 문제를 해결하기 위하여 특허 정보의 국/영문 제목을 병렬말뭉치로 이용하여 대역어 뭉치를 추출하고, 이를 각 단어의 특징(Feature)으로 이용하여 대체어 목록을 자동 추출하는 방법을 제안한다. 또한 대체어 목록 내에 대체어가 아닌 다수의 연관단어들이 포함되는 문제점을 해결하기 위하여 국문 제목에서 추출한 연관단어 뭉치를 이용하여 대체어 목록 내 연관단어들을 필터링하는 방법을 제안한다. 평가결과에 따르면 본 연구에서 제안한 방법이 기존의 대체어 추출 방법들보다 더 우수한 것으로 나타났다.

딜리셔스에서 유사태그 추출에 관한 연구 (Mining Semantically Similar Tags from Delicious)

  • 이관
    • 정보관리학회지
    • /
    • 제26권2호
    • /
    • pp.127-147
    • /
    • 2009
  • 자연언어에서 유사어의 처리는 사람과 컴퓨터간의 의사소통에 적지 않은 장애가 되어왔고, 이는 사용자의 임의적 단어사용에 기반을 두고 있는 웹 2.0 애플리케이션, 특히 소셜태깅 분야에 있어서 그 장애의 정도가 더 심각해질 수 있다. 본 연구는 한 대표적인 웹 2.0 애플리케이션에서 자동 유사어 추출에 관한 문제를 다루고 있다. 더 구체적으로, 가장 널리 사용되는 소셜북마킹 애플리케이션인 딜리셔스를 기반으로, 유사태그를 추출하는 방법(FolkSim)을 제시하고자 한다. 제시한 방법의 평가를 위하여, 문서유사도의 측정을 위해서 쓰여진 고전적 벡터모델에 의거한 유사태그를 추출하는 방법(CosSim)과 그 결과들을 서로 비교분석하여 보았다. 몇 가지 면에서 FolkSim가 더 나은 결과 산출해내는 증거들이 관찰되어졌다. 또한, FolkSim 방법에 의한 유사태그가 만들어지지 않는 경우에 대비하여, 그 대안 또한 제시하고 있다.

감성공학을 이용한 이동통신기기의 품질평가 방법론에 관한 연구 (A Study on the Methodologies of the Quality Assessment of the Mobile Telecommunication Units Using Kansei Engineering)

  • 김동남;조재립
    • 품질경영학회지
    • /
    • 제27권3호
    • /
    • pp.154-169
    • /
    • 1999
  • In many fields, Kansei engineering, often called Human Sensibility Ergonomics, has been applied to the product development for customer's satisfaction. Also, it may use to a lot of products and environments related to human's convenient life. If the measurement and the validation of human sensibility are accomplished subjectively and qualitatively, then a good design is expected. This paper considers an application of one of the Kansei engineering's techniques, extraction and categorization of the sensory words, to the products of mobile telecommunication units. First, 1st sensory words were extracted from Korean dictionary, catalogues, pamphlets, etc. Second, 2nd sensory words were extracted from the questionnaires, elimination of synonym, advise of expert, etc. Third, final sensory words were extracted from questionnaires, etc. Fourth, ask to answer the questionnaires with the extracted words in the five-grade semantic differential. Finally, The factor analysis is used to categorize the extracted sensory words, and shows that the words can be grouped into some categories.

  • PDF

단어 의미 정보를 활용하는 이용자 자연어 질의 유형의 효율적 분류 (Efficient Classification of User's Natural Language Question Types using Word Semantic Information)

  • 윤성희;백선욱
    • 정보관리학회지
    • /
    • 제21권4호
    • /
    • pp.251-263
    • /
    • 2004
  • 질의응답 시스템에서의 질의 분석 과정은 이용자의 자연어 질의 문장에서 질의 의도를 파악하여 그 유형을 분류하고 정답 추출을 위한 정보를 구하는 것이다. 본 연구에서는 복잡한 분류 규칙 집합이나 대용량의 언어 지식 자원 대신 이용자 질의 문장에서 질의 초점 어휘를 추출하고 구문 구조적으로 관련된 단어들의 의미 정보에 기반하여 효율적으로 질의 유형을 분류하는 방법을 제안한다. 질의 초점 어휘가 생략된 경우의 처리와 동의어와 접미사 정보를 이용하여 질의 유형 분류 성능을 향상시킬 수 있는 방법도 제안한다.

감정 자질을 이용한 한국어 문장 및 문서 감정 분류 시스템 (A Korean Sentence and Document Sentiment Classification System Using Sentiment Features)

  • 황재원;고영중
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권3호
    • /
    • pp.336-340
    • /
    • 2008
  • 최근 감정 분류에 대한 관심이 높아져 연구가 활발히 진행되고 있다. 문서 전체에 관한 감정의 분류도 중요하지만, 문서를 이루고 있는 문장에 관한 분류도 점차 그 필요성이 높아지고 있다. 본 논문에서는 한국어 감정 분류 시스템 구축을 위해서 추출된 한국어 감정 자질을 이용한 한국어 문장 및 문서 감정 분류에 관해 연구한다. 한국어 감정 분류의 시작은 감정을 내포한 대표적인 어휘로부터 시작하며, 이와 같은 감정 자질들은 문장 및 문서의 감정을 분류하는데 결정적인 관여를 한다. 한국어 감정 자질의 추출을 위하여 영어 단어 시소러스 정보를 이용하여 자질들을 확장하고, 영한사전을 통해 확장된 자질들을 번역함으로써 감정 자질들을 추출하였다. 추출된 감정 자질들을 사용하여, 단어 벡터로 표현된 입력문서를 이진 분류기인 지지벡터 기계(SVM: Support Vector Machine)를 이용하여 문장과 문서에 내포된 감정을 판단하고 평가하였다.

감정 분류를 위한 한국어 감정 자질 추출 기법과 감정 자질의 유용성 평가 (A Korean Emotion Features Extraction Method and Their Availability Evaluation for Sentiment Classification)

  • 황재원;고영중
    • 인지과학
    • /
    • 제19권4호
    • /
    • pp.499-517
    • /
    • 2008
  • 본 논문에서는 한국어 감정 분류에 기반이 되는 감정 자질 추출의 효과적인 추출 방법을 제안하고 평가하여, 그 유용성을 보인다. 한국어 감정 자질 추출은 감정을 지닌 대표적인 어휘로부터 시작하여 확장할 수 있으며, 이와 같이 추출된 감정 자질들은 문서의 감정을 분류하는데 중요한 역할을 한다. 문서 감정 분류에 핵심이 되는 감정 자질의 추출을 위해서는 영어 단어 시소러스 유의어 정보를 이용하여 자질들을 확장하고, 영한사전을 이용하여 확장된 자질들을 번역하여 감정 자질들을 추출하였다. 추출된 한국어 감정 자질들을 평가하기 위하여, 이진 분류 기법인 지지 벡터 기계(Support Vector Machine)를 사용해서 한국어 감정 자질로 표현된 입력문서의 감정을 분류하였다. 실험 결과, 추출된 감정 자질을 사용한 경우가 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우보다 약 14.1%의 성능 향상을 보였다.

  • PDF

움직임 객체의 의미적 모델링을 통한 차량 흐름 자동 분석 (Auto-Analysis of Traffic Flow through Semantic Modeling of Moving Objects)

  • 최창;조미영;최준호;최동진;김판구
    • 한국ITS학회 논문지
    • /
    • 제8권6호
    • /
    • pp.36-45
    • /
    • 2009
  • 최근 도로상의 비디오 영상에서 다양한 저차원 정보를 바탕으로 자동 차량 흐름 파악과 사고 탐지에 관해 관심이 높아지고 있다. 본 논문에서는 CCTV 동영상 교통관리시스템을 이용하여 자동으로 차량의 흐름을 파악하고 이를 이용하여 교통체증과 더 나아가 사고탐지를 위한 알고리즘과 그 응용에 대해 연구하였다. 이를 위하여 우선 움직임 객체를 시공간 관계 모델링을 통해 차량의 실제 궤적과 매핑하고 이를 통해 차량의 흐름 파악에 사용하였다. 또한 시공간 관계 모델링과 차량의 실제 궤적간 매핑을 위해 TSR (Tangent Space Representation) 알고리즘을 사용하였다. 또한, 객체의 움직임 추출을 위해 먼저 차(Differece)영상을 이용하여 움직임 객체 추출을 하였고, 이를 통하여 객체의 움직임 트래킹(Tracking)을 하고 각 객체에 번호를 부여하여 동시에 여러 객체를 인식시키고 이를 저장하였다. 이를 통하여 의미적 움직임 객체를 인식하고, 차량 흐름을 파악하는 어플리케이션을 구현하였다. 본 연구를 통해 기본적인 움직임 객체에 대한 의미적인 결과를 얻을 수 있었고, 나아가 CCTV를 이용한 자동 사고 탐지에 관한 연구로 확장시킬 수 있을 것으로 기대된다.

  • PDF

온톨로지를 이용한 의미 기반 정보 채움 시스템 (A Semantic-Based Information Filling System Using Ontology)

  • 민영근;김인수;이복주
    • 정보처리학회논문지B
    • /
    • 제14B권4호
    • /
    • pp.295-302
    • /
    • 2007
  • 테이블 형태로 이루어진 이력서 양식이나 인터넷 회원 가입에서 개인의 신상 정보를 매번 입력하는 일은 매우 반복적이고 번거로운 일이다. 개인의 신상 정보를 컴퓨터에 저장하고 있다가 인터넷 회원 가입 페이지에 자동으로 채워 주는 몇 개의 시스템이 나와 있으나 필드와 필드 값이 잘못 매치되는 등 정확도가 떨어지는 면이 있다. 본 연구는 컴퓨터에 개인의 신상정보를 저장하고 있다가 개인 데이터 온톨로지를 이용하여 회원가입 페이지(목표 페이지)에서 요구하는 사용자의 정보를 추론하고 자동으로 채워주는 시스템을 제안하였다. 추론의 과정에서 먼저 목표 페이지를 분석하여 요구하는 필드명을 추출하고, 유사어 온톨로지를 이용하여 요구 필드명을 표준 필드명으로 변환한다. 표준 필드명으로 변환된 요구 필드는 온톨로지 매치 메이킹을 이용하여 개인 데이터 온톨로지 상의 적절한 레벨을 찾아서 최종적인 필드값을 생성한다. 본 시스템은 목표 페이지와 유사한 필드를 가져올 뿐만 아니라 온톨로지 계층 상에 해당되는 필드를 추론하여 정확한 필드값을 가져오게 된다. 몇 개의 회원 가입 페이지를 대상으로 실험한 결과 본 시스템이 기존의 시스템에 비해 정확도에서 우수함을 보였다. 본 시스템은 이력서 양식 등 반복적으로 동일한 정보를 채우는 경우에도 쉽게 적용 가능하다.