• Title/Summary/Keyword: syncytia formation

Search Result 13, Processing Time 0.02 seconds

Differential Subcellular Responses in Resistance Soybeans Infected with Soybean Cyst Nematode Races

  • Kim, Young-Ho;Kim, Kyung-Soo;Riggs, Robert D.
    • The Plant Pathology Journal
    • /
    • v.26 no.2
    • /
    • pp.154-158
    • /
    • 2010
  • Early nematode development and subcellular responses in resistant soybean lines PI 88788 and PI 437654 infected with races 3 (R3) and 14 (R14) of soybean cyst nematode (SCN), Heterodera glycines Ichinohe, were compared. SCN R14 nematodes penetrated and developed significantly more than R3 at 5-6 days after inoculation. Both races also penetrated and developed more in PI 88788 than in PI 437654. Syncytia, characterized by cell wall dissolution and cellular hypertrophy, were developed more in PI 88788 than in PI 437654 and more by R14 than R3, for which less necrotic responses occurred in the former than the latter. This suggests that the latter two may be more resistant and less virulent than the former two, respectively. A common structural feature found in each of PI 437654 and PI 88788 in relation to SCN-resistance was the formation of prominent cell wall appositions and nuclear degeneration prior to cytoplasmic degradation in syncytial cells, respectively. Necrosis and cell wall apposition are types of hypersensitive responses occurring at early stages of the nematode infection so that these structural modifications indicate the inhibition of initial syncytial development related to the early nematode development. As soybean cultivars and lines with identical or similar genotypes have the same types of structural features related to SCN-resistance, the structural modifications induced by SCN infection may result from the expression of inheritable resistance genes, of which the information can be used for breeding soybean cultivars and lines specifically resistant to SCN races.

Biological and Physicochemical Properties of Porcine Epidemic Diarrhea Virus Chinju99 Strain Isolated in Korea (국내 분리 돼지 유행성설사 바이러스 Chinju99주의 생물학적 및 물리화학적 성상)

  • Lee, Hee-Kyung;Yeo, Sang-Geon
    • Journal of Veterinary Clinics
    • /
    • v.20 no.2
    • /
    • pp.150-154
    • /
    • 2003
  • A disease with severe diarrhea occurred in a herd of one thousand, 1-week-old piglets in Chinju, Korea, and was diagnosed as porcine epidemic diarrhea by the detection of N gene of porcine epidemic diarrhea virus (PEDV) from small intestines. A PEDV, named as Chinju99, was also isolated from the intestines after two blind-passages in Vero cells supplemented with trypsin (10 ug/ml). and the biological and physicochemical properties of the isolate were characterized. The virion was roughly spherical in shape and had spike peplomers on its outer surface. The virus exhibited cytopathic effects such as rounding degeneration at initiation of infection and syncytia formation later in Vero cells. The virus was labile to 20% ether and 5% chloroform but stable in acid with pH 4-7 at $4^{\circ}C$. The infectivity of the virus was maintained at $50^{\circ}C$ for 180 min, and the buoyant density of the virus in sucrose was 1.180 g/ml. All biological and physicochemical properties of the virus were typical features of coronaviruses.

Study on Persistent Infection of Japanese Encephalitis Virus Beijing-l Strain in Serum-free Sf9 Cell Cultures

  • Kim, Hun;Lee, Su-Jeen;Park, Jin-Yong;Park, Yong-Wook;Kim, Hyun-Sung;Kang, Heui-Yun;Hur, Byung-Ki;Ryu, Yeon-Woo;Han, Sang-In
    • Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.25-31
    • /
    • 2004
  • Sf9 cells have obvious advantages for the conventional production technology of vaccine. They are useful tools for high concentration and large-scale cultures. Sf9 cells were grown to maximal concentration, 8${\times}$l0$\^$6/ cells/$m\ell$ in a 500$m\ell$ spinner flask, with a doubling time at the exponentially growing phase of 24.5 hours, using serum-free media. To explore the ability of Sf9 cells to be infected by the Japanese encephalitis (JE) virus Beijing-l strain, Sf9 cells were infected with the virus. By 4-5 days post-infection, 10-15 % of the Sf9 cells showed cytopathic effect (CPE), from granularity to the formation of syncytia and multinucleated giant cells continuously observed over a period of 35 days. Positive fluorescent reactions were detected in 30-40% of cells infected with the JE virus Beijing-l strain, and the uninfected Sf9 cells were completely negative. Virus particles, propagated in Sf9 and Vero cells, were concentrated by sedimentation on 40% trehalose cushions by ultracentrifugation, and showed identical patterns of viral morphogenesis. Complete virus particles, 40 to 50 nm in diameter, were observed, and JE virus envelope (E) proteins, at 53 kDa, were found in the western blot analysis to the anti-JE virus E protein monoclonal antibody and reacted as a magenta band in the same position to the glycoprotein staining. To evaluate whether the infectious virus was produced in Sf9 cells inoculated with the JE virus Beijing-l stain, Sf9 cells were inoculated with the virus, and sample harvested every 5 days. The titers of the JE virus Beijing-l strain rose from 1.0${\times}$l0$\^$5/ to 1.5${\times}$l0$\^$6/ pfu/$m\ell$. The infected Sf9 cells could be subcultured in serum-free medium, with no change in the plaque sizes formed by the JE virus Beijing-l strain in the plaque assay. It is suggested that the ability of the JE virus Beijing-l strain to infect Sf9 cells in serum-free media will provide a useful insect cell system, where the JE virus replication, cytopathogenicity and vaccine immunogen can be studied.