• Title/Summary/Keyword: synchro drive mobile robot

Search Result 7, Processing Time 0.021 seconds

Development of Synchro-drive Mobile Robot Base with Endless Rotate Type Turret (무한회전 터릿을 갖는 동기식 이동로봇 베이스의 개발)

  • Kwon, Oh-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.123-129
    • /
    • 2005
  • As the robot industry changes from industrial robot into personal robot used in home, the concept also changes from the existing fixed manipulator into Mobile Manipulator of free move in the aspect of appliance. For personal robot with such features, the role of mobile system is very important technology that rules the roost of robot functions. Especially, it is necessary to develop moving mechanism for free move in a narrow environment with obstacles such as home. This study introduces 3-axis structure in order to develop synchronous method that has turret capable of endless revolution for practical use as well as semi-omnidirectional function, and suggests applicable method to solve the problem of mechanical coupling.

A Study on the Localization Method for the Autonomous Navigation of Synchro Drive Mobile Robot (동기 구동형 이동로봇의 자율주행을 위한 위치측정과 경로계획에 관한 연구)

  • Ku, Ja-Yl;Hong, Jun-Peu;Lee, Won-Suk
    • 전자공학회논문지 IE
    • /
    • v.43 no.1
    • /
    • pp.59-66
    • /
    • 2006
  • In this study, we have proposed a motion equation to control synchro drive mobile robot, a path plan to compute and track the best path to given destination and a technique utilizing uniform distribution and cluster management based Monte Carlo localization to have track current position of moving robot. In the localization test which was repeated 73 times resulted as following. The average process time of original Monte Carlo localization was 12.8ms. The proposed cluster management Monte Carlo localization resulted 9.3ms. Also the proposed method resulted correctly in the cases where original method failed.

Improving on the Obstacle Avoidance Method for a Mobile Robot (mobile robot의 장애물 회피방법 개선)

  • Park, Jong-Hun;Lee, Woo-Young;Huh, Dei-Jeung;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.146-149
    • /
    • 2002
  • This paper presents collision avoidance for mobile robots equipped with synchro-drive using curvature trajectory by the obstacle type. he new real-time obstacle avoidance method presents how to create a curvature trajectory in which dynamics of a mobile robot is considered we controlled translation and rotational velocity of the mobile robot. Using these two speeds with curvature trajectory, the mobile robot navigates to target point without collision. We consider that the robot going to curvature trajectory by obstacle size towards a goal location. The collision avoidance has been implemented and tested using pioneer2-dxe mobile robot.

  • PDF

Obstacle Avoidance with curvature trajectory in mobile robot (곡선 궤적을 이용한 mobile robot의 장애물 회피)

  • Lee, Woo-Young;Huh, Dae-Jung;Huh, Uk-Youl;Kim, Young-Geun;Kim, Hak-Il;Lee, Gwan-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2457-2459
    • /
    • 2002
  • In this paper, we describe the way how to create a curvature trajectory where the dynamics of a mobile robot is considered. Synchro-drive motor is used in a mobile robot. And translational and rotational speeds are controlled independently. Using these two speeds, a mobile robot traces a smooth curvature trajectory that consists of circle trajectories to a target point. While trying to avoid obstacles, the robot can be goal-directed using curvature trajectory. Also, while the robot can navigate the trajectory, the maximum speed is controlled to trade off speed and safely.

  • PDF

The Design of USB Robot Control System for Synchro-drive Mobile Robot (동기식 이동로봇을 위한 USB 로봇 제어시스템 설계)

  • 남중현;권오상;이응혁;장원석
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.159-162
    • /
    • 2000
  • This paper addresses the design and implementation problem of the mobile robot with the synchronous driving mechanism that consists of modular control systems based on the Universal Serial Bus (USB). Recently, the USB have attracted the hardware developers'interests due to its low cost, compatibility, and extenability. In particular, the USB enables us to organize the whole system in the modular manner very easily, and this property plays a very important role in shortening the developing time in implementing the target system, for example, the mobile robot system. In this paper, we implement the USB motion controller and the USB ultrasonic sensor system and verified the validity and the effectiveness of the proposed system through the real experiments including the mobile robot navigation and the environment recognition.

  • PDF

Behavior-Based Fuzzy Control of Mobile Robots for Autonomous Navigation (이동로봇의 자율주행을 위한 행동기반의 퍼지 제어)

  • Choi, Hyoun-Chul;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2464-2466
    • /
    • 2001
  • In this paper, a behavior-based fuzzy control of mobile robots for autonomous navigation is presented. Behaviors of mobile robots are divided into two categories: reactive behavior and purposeful behavior, which are incompatible with each other. The former is reaction performed in terms of the sensory data and the latter is action for achieving the goal. The presented method generates appropriate control inputs to the robot to trade-off between the reactive and purposeful behaviors using fuzzy inferences. The method is applied to an synchro-drive type mobile robot and shown to be useful for autonomous robot navigation by providing simulation results.

  • PDF

An Estimation Method of the Covariance Matrix for Mobile Robots' Localization (이동로봇의 위치인식을 위한 공분산 행렬 예측 기법)

  • Doh Nakju Lett;Chung Wan Kyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.457-462
    • /
    • 2005
  • An empirical way of a covariance matrix which expresses the odometry uncertainty of mobile robots is proposed. This method utilizes PC-method which removes systematic errors of odometry. Once the systematic errors are removed, the odometry error can be modeled using the Gaussian probability distribution, and the parameters of the distribution can be represented by the covariance matrix. Experimental results show that the method yields $5{\%}$ and $2.3{\%}$ offset for the synchro and differential drive robots.