• 제목/요약/키워드: symplectic mnifold

검색결과 1건 처리시간 0.016초

A NOTE ON HOFER'S NORM

  • Cho, Yong-Seung;Kwak, Jin-Ho;Yoon, Jin-Yue
    • 대한수학회보
    • /
    • 제39권2호
    • /
    • pp.277-282
    • /
    • 2002
  • We Show that When ($M,\;\omega$) is a closed, simply connected, symplectic manifold for all $\gamma\;\in\;\pi_1(Ham(M),\;id)$ the following inequality holds: $\parallel\gamma\parallel\;{\geq}\;sup_{\={x}}\;|A(\={x})|,\;where\;\parallel\gamma\parallel$ is the coarse Hofer's norm, $\={x}$ run over all extensions to $D^2$ of an orbit $x(t)\;=\;{\varphi}_t(z)$ of a fixed point $z\;\in\;M,\;A(\={x})$ the symplectic action of $\={x}$, and the Hamiltonian diffeomorphisms {${\varphi}_t$} of M represent $\gamma$.