• Title/Summary/Keyword: symmetric structure responses

Search Result 14, Processing Time 0.02 seconds

Sensor fault diagnosis for bridge monitoring system using similarity of symmetric responses

  • Xu, Xiang;Huang, Qiao;Ren, Yuan;Zhao, Dan-Yang;Yang, Juan
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.279-293
    • /
    • 2019
  • To ensure high quality data being used for data mining or feature extraction in the bridge structural health monitoring (SHM) system, a practical sensor fault diagnosis methodology has been developed based on the similarity of symmetric structure responses. First, the similarity of symmetric response is discussed using field monitoring data from different sensor types. All the sensors are initially paired and sensor faults are then detected pair by pair to achieve the multi-fault diagnosis of sensor systems. To resolve the coupling response issue between structural damage and sensor fault, the similarity for the target zone (where the studied sensor pair is located) is assessed to determine whether the localized structural damage or sensor fault results in the dissimilarity of the studied sensor pair. If the suspected sensor pair is detected with at least one sensor being faulty, field test could be implemented to support the regression analysis based on the monitoring and field test data for sensor fault isolation and reconstruction. Finally, a case study is adopted to demonstrate the effectiveness of the proposed methodology. As a result, Dasarathy's information fusion model is adopted for multi-sensor information fusion. Euclidean distance is selected as the index to assess the similarity. In conclusion, the proposed method is practical for actual engineering which ensures the reliability of further analysis based on monitoring data.

Exact Solution on the Anti-symmetric Responses of Ships having Uniform Sectional Properties with Hydro-elasticity (균일단면 선박의 유탄성 수평응답에 대한 해석해)

  • ;;A. Korobkin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.45-52
    • /
    • 2004
  • Exact solution on the anti-symmetric response of ships having uniform sectional properties in waves is derived. Boundary value problem consisted of Timoshenko beam equation and free-free end condition is solved analytically. The responses are assumed as linear and wave loads are calculated by using strip method. Horizontal bending moment, shear force and torsional moment are calculated. The developed analysis model is used for the benchmark test of the numerical codes in this problem. Also the application on the preliminary design of barge-like ships and VLFS (Very Large Floating Structure) is expected

Evaluation of Inelastic Displacement Response for Multi-Span Bridge Structures Subjected to Earthquakes (지진하중에 대한 다경간 교량의 비탄성 변위응답 평가)

  • Song, Jong-Keol;Nam, Wang-Hyun;Chung, Yeong-Hwa
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.195-204
    • /
    • 2004
  • To evaluate inelastic seismic responses of multi-span bridge structures, the capacity spectrum method(CSM) incorporating the equivalent single-degree-of freedom(ESDOF) method is presented. Application of the CSM incorporating the ESDOF method is illustrated by example analysis for symmetric and asymmetric bridge structures. To investigate an accuracy of the CSM, the maximum displacements estimated by the CSM are compared to those by inelastic time history analysis for several artificial earthquakes. The results show that the CSM provided conservative estimates of the maximum displacements for the symmetric and asymmetric bridge structures, and the trend of conservative estimates of the asymmetric bridge structures was significantly larger than that of the symmetric bridge structure.

  • PDF

On the Forced Vibration in the Nonlinear Symmetric Structure by Using the Normal Modes (정규모우드를 활용한 비선형 대칭구조물의 강제진동해석)

  • 박철희;최성철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.21-28
    • /
    • 1994
  • The forced vibration with the symmetric boundary condition in nonlinear structure is studied by utilizing the characteristic of the free vibration which have two modes with the similar natural frequency. Two linear modes exist to have no concern with the amplitude. It is found that the normal mode or elliptic orbit as the newly coupled modes is generated in accordance with changing the stability. It is also known that responses for forced vibration having the small external force and damping are near mode of free vibration and the stability for each response is determined according to the stability for each response is determined according to the stability in mode of free vibration. Finally the stability and bifurcation are analyzed in proportion to increment of external force and damping.

  • PDF

Responses of structure to impulsive loading with application of viscoplasticity (점소성론을 이용한 구조물의 충격응답 해석)

  • 김상환
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.59-66
    • /
    • 1995
  • The dynamic responses of structure under impulsive loading have been investigated according to its duration, based on the theory of viscoplasticity which can appropriately represent the effects of plasticity and rheology simultaneously. The viscoplastic model has been implemented into the two-dimensional finite element system to solve plane stress, plane strain or axi-symmetric problems, and the implicit integration scheme, of which solutions are unconditionally stable for relatively large time step length, has been developed to simulate visoplastic straining with deriving the explicit relationship between stress and strain at a material point level. After simulation, one carefully concludes that the duration as well as magnitude of impulsive loading plays an important role in design of structures.

  • PDF

Health monitoring of pressurized pipelines by finite element method using meta-heuristic algorithms along with error sensitivity assessment

  • Amirmohammad Jahan;Mahdi Mollazadeh;Abolfazl Akbarpour;Mohsen Khatibinia
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.211-219
    • /
    • 2023
  • The structural health of a pipeline is usually assessed by visual inspection. In addition to the fact that this method is expensive and time consuming, inspection of the whole structure is not possible due to limited access to some points. Therefore, adopting a damage detection method without the mentioned limitations is important in order to increase the safety of the structure. In recent years, vibration-based methods have been used to detect damage. These methods detect structural defects based on the fact that the dynamic responses of the structure will change due to damage existence. Therefore, the location and extent of damage, before and after the damage, are determined. In this study, fuzzy genetic algorithm has been used to monitor the structural health of the pipeline to create a fuzzy automated system and all kinds of possible failure scenarios that can occur for the structure. For this purpose, the results of an experimental model have been used. Its numerical model is generated in ABAQUS software and the results of the analysis are used in the fuzzy genetic algorithm. Results show that the system is more accurate in detecting high-intensity damages, and the use of higher frequency modes helps to increase accuracy. Moreover, the system considers the damage in symmetric regions with the same degree of membership. To deal with the uncertainties, some error values are added, which are observed to be negligible up to 10% of the error.

Strongly Coupled Method for 2DOF Flutter Analysis (강성 결합 기법을 통한 2계 자유도 플러터 해석)

  • Ju, Wan-Don;Lee, Gwan-Jung;Lee, Dong-Ho;Lee, Gi-Hak
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.24-31
    • /
    • 2006
  • In the present study, a strongly coupled analysis code is developed for transonic flutter analysis. For aerodynamic analysis, two dimensional Reynolds-Averaged Navier-Stokes equation was used for governing equation, and ε-SST for turbulence model, DP-SGS(Data Parallel Symmetric Gauss Seidel) Algorithm for parallelization algorithm. 2 degree-of-freedom pitch and plunge model was used for structural analysis. To obtain flutter response in the time domain, dual time stepping method was applied to both flow and structure solver. Strongly coupled method was implemented by successive iteration of fluid-structure interaction in pseudo time step. Computed results show flutter speed boundaries and limit cycle oscillation phenomena in addition to typical flutter responses - damped, divergent and neutral responses. It is also found that the accuracy of transonic flutter analysis is strongly dependent on the methodology of fluid-structure interaction as well as on the choice of turbulence model.

Three-Dimensional Flow Response Analysis of Subsea Riser Transporting Deep Ocean Water (심층수 취수용 해저 라이저의 3차원 흐름 응답해석)

  • Hwang, Hajung;Woo, Jinho;Na, Won-Bae;Kim, Hyeon-Ju
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.2
    • /
    • pp.113-117
    • /
    • 2015
  • This study presents a 3-dimensional flow-structure interaction analysis of subsea risers in water flows. Two structural connectors (flat and circular couplers) were intentionally devised and numerically tested using ANSYS CFX to investigate how these couplers behave under the water flows. In the flow analysis, the water field was constructed with an inlet, outlet, and symmetric boundary conditions. As a result, the responses (drag coefficients and pressure fields) were obtained and the pressure fields were applied for the structural analysis. Finally, the structural responses (displacements and equivalent stresses) of the risers were measured to demonstrate the efficiency of the riser connectors.

A Suppression of Residual Vibration on the Flexible Structures by Input Shaping (입력설계기법에 의한 유연구조물의 잔류진동제어)

  • Park, Myoungho;Han, Myoungseok;Park, Sungjong
    • 대한공업교육학회지
    • /
    • v.31 no.2
    • /
    • pp.364-380
    • /
    • 2006
  • This paper presents a procedure for designing command to maneuver flexible structure with very little residual vibration, even in the presence of modeling errors. For the open loop maneuver, the various shaped profiles using multiple step inputs delayed in time are considered for robustness and compared with the responses of rigid body and flexible body in virtue of simulations and experiments. Input shaping generates vibration-reducing shaped commands through convolution of an impulse sequence with the desired command. A flexible model with a cylindrical hub and four symmetric appendages is considered to examine the responses to real plant, and to illustrate the effectiveness of the proposed shapers. The appendages are long and flexible, leading to low frequency vibration under any control action. It is shown by a series of simulation that a properly designed feedback controller with input shaper performs well, as compared with open loop controller with input shaper. The control objective is to achieve a fast settling time of residual vibration to flexible structure and robustness (insensitivity)to plant uncertainty, to eliminate residual vibration.

Optimality criteria based seismic design of multiple tuned-mass-dampers for the control of 3D irregular buildings

  • Daniel, Yael;Lavan, Oren
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.77-100
    • /
    • 2015
  • Multiple tuned mass dampers (MTMDs) tuned to various frequencies have been shown to efficiently control the seismic response of structures where multiple modes are dominant. One example is irregular structures that are found more vulnerable than their symmetric counterparts. With the technology of MTMDs available, design and optimal design methodologies are required for application. Such a methodology, in the form of an analysis/redesign (A/R) scheme, has been previously presented by the authors while limiting responses of interest to allowable values, i.e., performance-based design (PBD). In this paper, the A/R procedure is modified based on formal optimality criteria, making it more cost efficient, as well as more computationally efficient. It is shown that by using the methodology presented herein, a desired performance level is successfully targeted by adding near-optimal amounts of mass at various locations and tuning the TMDs to dampen several of the structure's frequencies. This is done using analysis tools only.