• Title/Summary/Keyword: symbol timing

Search Result 184, Processing Time 0.024 seconds

Synchronization for Wireless LAN System Using OFDM Technique (OFDM 방식을 이용한 무선 LAN 시스템의 동기)

  • Yun, Kyung-Seok;Choi, Seung-Kuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1B
    • /
    • pp.79-89
    • /
    • 2002
  • A synchronization method is presented for IEEE 802.11a wireless OFDM system. First the coarse symbol synchronization is achieved by measuring the moving power average of the received envelope signal. The detection probabilities and optimum thresholds for the symbol synchronization are derived. By measuring the correlation between the short training signal and received envelope signal, fine symbol synchronization can be acquired. And the frequency synchronization is achieved using long training signal. A symbol synchronization error causes a phase rotation of the constellation. After the compensation for fading channel, the rotation due to the symbol timing error can be corrected. With this method, synchronization can be well achieved over frequency selective channels.

Comparative Study of the Symbol Rate Detection of Unknown Digital Communication Signals (미상 디지털 통신 신호의 심볼율 검출 방식 비교)

  • Joo, Se-Joon;Hong, Een-Kee
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.141-148
    • /
    • 2003
  • This paper presents and compares several techniques that detect the symbol rate of unknown received signal. Symbol rate is detected from the power spectral density of the circuits such as the delay and multiplier circuit, the square law circuit, and analytic signal, etc. As a result of discrete Fourier transform of the output signals of these circuits, a lot of spectral lines and some peaks appear in frequency domain and the position of first peak is corresponding to the symbol rate. If a spectral line on the frequency that is not located in symbol rate is larger than the first peak, the symbol rate is erroneously detected. Thus, the ratio between the value of first peak and the highest side spectral line is used for the measure of the performance of symbol rate detector. For the MPSK modulation, the analytic signal method shows better performance than the delay and multiplier and square law circuits when the received signal power is lager than -20dB. It is also noted that the delay and multiplier circuit is not able to detect the symbol rate for the QAM modulation.

  • PDF

System Performance with Synchronization Errors in Distributed Beamforming Systems (분산 빔포밍을 이용한 시스템에서 동기에러에 의한 시스템 성능 영향 분석)

  • Kim, Haesoo;Kwon, Seong-Geun
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.4
    • /
    • pp.452-459
    • /
    • 2015
  • Three synchronization issues, i.e., phase, frequency, and symbol time, have to be properly controlled to achieve distributed beamforming gain. In this paper, the impacts of synchronization errors in distributed beamforming are analyzed for both single-carrier and OFDM systems. When the channel is constant over a symbol duration, the performance degradation due to phase offset is the same for both single-carrier and OFDM systems. For symbol timing offset in OFDM systems, high frequency subcarriers are more susceptible as compared to low frequency ones. Frequency offset is critical in OFDM systems since it leads to interference from the other subcarriers as well as power loss in the desired signal.

Access timing offsets-resilient uplink OFDMA for satellite systems (액세스 타이밍 오차에 강한 위성 시스템 상향링크 OFDMA 기법)

  • Kim, Bong-Seok;Choi, Kwon-Hue
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.92-96
    • /
    • 2010
  • We propose a new satellite OFDMA(Orthogonal Frequency Division Multiple Access) scheme with greatly enhanced tolerance of timing offset among the users. In uplink OFDMA systems, timing misalignment among users destroys subcarrier orthogonality and thus, it degrades the performance. In order to avoid this performance degradation, the accurate processing, so called 'ranging', is required to synchronize among users. However, ranging scheme is not available in the satellite systems due to the very long round trip delay. Exploiting the property that PSW(Propoerly Scrambled Walsh-code) code has zero correlation despite ${\pm}1$ chip timing offset, the proposed OFDMA achieves MAI free performance with the timing offset up to ${\pm}1$ OFDM symbol duration for the satellite systems.

An Improved Joint Detection of Frame, Integer Frequency Offset, and Spectral Inversion for Digital Radio Mondiale Plus

  • Kim, Seong-Jun;Park, Kyung-Won;Lee, Kyung-Taek;Choi, Hyung-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.601-617
    • /
    • 2014
  • In digital radio broadcasting systems, long delays are incurred in service start time when tuning to a particular frequency because several synchronization steps, such as symbol timing synchronization, frame synchronization, and carrier frequency offset and sampling frequency offset compensation are necessary. Therefore, the operation of the synchronization blocks causes delays ranging from several hundred milliseconds to a few seconds until the start of the radio service after frequency tuning. Furthermore, if spectrum inversed signals are transmitted in digital radio broadcasting systems, the receivers are unable to decode them, even though most receivers can demodulate the spectral inversed signals in analog radio broadcasting systems. Accordingly, fast synchronization techniques and a method for spectral inversion detection are required in digital radio broadcasting systems that are to replace the analog radio systems. This paper presents a joint detection method of frame, integer carrier frequency offset, and spectrum inversion for DRM Plus digital broadcasting systems. The proposed scheme can detect the frame and determine whether the signal is normal or spectral inversed without any carrier frequency offset and sampling frequency offset compensation, enabling fast frame synchronization. The proposed method shows outstanding performance in environments where symbol timing offsets and sampling frequency offsets exist.

A Pilot-Tone Based Channel Estimation Technique for Cooperative SFBC-OFDM Systems (Cooperative SFBC-OFDM 시스템을 위한 파일럿 톤 기반의 채널 추정 기법)

  • Park, Chang-Hwan;Ko, Yo-Han;Lee, Hee-Soo;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.661-668
    • /
    • 2008
  • In this paper, a channel estimation technique based on pilot tones is proposed for cooperative SFBC-OFDM systems with a STO(Symbol Timing Offset). In a cooperative SFBC-OFDM system, the STO between RS(Relay Station) and MS(Mobile Station) varies depending on the location of MS. Since the STO causes distortion in the form of phase rotation, a channel estimation technique based on linear interpolation with respect to phase and amplitude is proposed for the case of orthogonal pilot allocation. Also, a channel estimation technique is proposed by solving nonlinear equation for the case of pilot structure with orthogonal code. It is shown by computer simulation that the performance of channel estimation can be significantly improved when the proposed techniques are applied to cooperative SFBC-OFDM systems with STO.

Design of a computationally efficient frame synchronization scheme for wireless LAN systems (무선랜 시스템을 위한 계산이 간단한 초기 동기부 설계)

  • Cho, Jun-Beom;Lee, Jong-Hyup;Han, Jin_Woo;You, Yeon-Sang;Oh, Hyok-Jun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.64-72
    • /
    • 2012
  • Synchronization including timing recovery, frequency offset compensation, and frame synchronization is most important signal processing block in all wireless/wired communication systems. In most communication systems, synchronization schemes based on training sequences or preambles are used. WLAN standards of 802.11a/g/n released by IEEE are based on OFDM systems. OFDM systems are known to be much more sensitive to frequency and timing synchronization errors than single carrier systems. A loss of orthogonality between the multiplexed subcarriers can result in severe performance degradations. The starting position of the frame and the beginning of the symbol and training symbol can be estimated using correlation methods. Correlation processing functionality is usually complex because of large number of multipliers in implementation especially when the reference signal is non-binary. In this paper, a simple correlation based synchronization scheme is proposed for IEEE 802.11a/g/n systems. Existing property of a periodicity in the training symbols are exploited. Simulation and implementation results show that the proposed method has much smaller complexity without any performance degradation than the existing schemes.

Implementation of Timing Synchronization in Vehicle Communication System

  • Lee, Sang-Yub;Lee, Chul-Dong;Kwak, Jae-Min
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.3
    • /
    • pp.289-294
    • /
    • 2010
  • In the vehicle communication system, transferred information is needed to be detected as possible as fast in order to inform car status located in front and rear side. Through the moving vehicle information, we can avoid the crash caused by sudden break of front one or acquire to real time traffic data to check the detour road. To be connecting the wireless communication between the vehicles, fast timing synchronization can be a key factor. Finding out the sync point fast is able to have more marginal time to compensate the distorted signals caused by channel variance. Thus, we introduce the combination method which helps find out the start of frame quickly. It is executed by auto-correlation and cross-correlation simultaneously using only short preambles. With taking the absolute value at the implemented synch block output, the proposed method shows much better system performance to us.