We proposed a probabilistic approach of using syllable bigrams to the word-spacing problem. Syllable bigrams are extracted and the frequencies are calculated for the large corpus of 12 million words. Based on the syllable bigrams, we performed three experiments: (1) automatic word-spacing, (2) detection and correction of word-spacing errors for spelling checker, and (3) automatic insertion of a space at the end of line in the character recognition system. Experimental results show that the accuracy ratios are 97.7 percent, 82.1 percent, and 90.5%, respectively.
Annual Conference on Human and Language Technology
/
2000.10d
/
pp.85-88
/
2000
대용량 말뭉치에서 이웃 음절간 공기빈도 정보를 추출하여 한글의 bigram 음절 특성을 조사하였다. Bigram 음절 특성은 띄어쓰기가 무시된 문서에 대한 자동 띄어쓰기, 어떤 어절이 띄어쓰기 오류어인지 판단, 맞춤법 검사기에서 철자 오류어의 교정 등 다양한 응용분야에서 유용하게 사용될 것으로 예상되고 있다. 본 논문에서는 한글의 bigram 음절 특성을 자동 띄어쓰기 및 입력어절이 띄어쓰기 오류어인지를 판단하는데 적용하는 실험을 하였다. 실험 결과에 의하면 bigram 음절 특성이 매우 유용하게 사용될 수 있음을 확인하였다.
Proceedings of the Korean Society for Cognitive Science Conference
/
2000.06a
/
pp.85-88
/
2000
대용량 말뭉치에서 이웃 음절간 공기빈도 정보를 추출하여 한글의 bigram 음절 특성을 조사하였다. Bigram 음절 특성은 띄어쓰기가 무시된 문서에 대한 자동 띄어쓰기, 어떤 어절이 띄어쓰기 오류어인지 판단, 맞춤법 검사기에서 절차 오류어의 교정 등 다양한 응용분야에서 유용하게 사용될 것으로 예상되고 있다. 본 논문에서는 한글의 bigram 음절 특성을 자동 띄어쓰기 및 입력어절이 띄어쓰기 오류어인지를 판단하는데 적용하는 실험을 하였다. 실험 결과에 의하면 bigram 음절 특성이 매우 유용하게 사용될 수 있음을 확인하였다.
IEMEK Journal of Embedded Systems and Applications
/
v.17
no.4
/
pp.199-208
/
2022
Korean is an agglutinative language, and one or more morphemes are combined to form a single word. Part-of-speech tagging method separates each morpheme from a word and attaches a part-of-speech tag. In this study, we propose a new Korean part-of-speech tagging method based on the Head-Tail tokenization technique that divides a word into a lexical morpheme part and a grammatical morpheme part without decomposing compound words. In this method, the Head-Tail is divided by the syllable boundary without restoring irregular deformation or abbreviated syllables. Korean part-of-speech tagger was implemented using the Head-Tail tokenization and deep learning technique. In order to solve the problem that a large number of complex tags are generated due to the segmented tags and the tagging accuracy is low, we reduced the number of tags to a complex tag composed of large classification tags, and as a result, we improved the tagging accuracy. The performance of the Head-Tail part-of-speech tagger was experimented by using BERT, syllable bigram, and subword bigram embedding, and both syllable bigram and subword bigram embedding showed improvement in performance compared to general BERT. Part-of-speech tagging was performed by integrating the Head-Tail tokenization model and the simplified part-of-speech tagging model, achieving 98.99% word unit accuracy and 99.08% token unit accuracy. As a result of the experiment, it was found that the performance of part-of-speech tagging improved when the maximum token length was limited to twice the number of words.
Annual Conference on Human and Language Technology
/
2005.10a
/
pp.189-193
/
2005
본 논문은 통계 기반 방법인 음절 bigram을 이용한 자동 띄어쓰기를 기본 방법으로 하고 경우의 수를 세분화한 확장된 음절 bigram을 이용한 공백 확률, 띄어쓰기 통계를 바탕으로 최종 띄어쓰기 임계치 차등 적용, 에러 사전 적용 3가지 방법을 추가로 사용하는 경우 기본적인 방법만을 쓴 경우보다 띄어쓰기 정확도가 향상된다는 것을 확인하였다. 그리고 해당 음절에 대한 bigram이 없는 경우 확장된 음절 unigram을 통해 근사적으로 계산해 데이터부족 문제를 개선하였다. 한국어 말뭉치와 중국어 말뭉치에 대한 실험을 통해 본 논문에서 제안하는 방법이 한국어 자동 띄어쓰기뿐만 아니라 중국어 단어 분리에 적용할 수 있다는 것도 확인하였다.
Traditional compound noun decomposition algorithms often face challenges of decomposing compound nouns into separated nouns when unregistered unit noun is included. It is very difficult for those traditional approach to handle such issues because it is impossible to register all existing unit nouns into the dictionary such as proper nouns, coined words, and foreign words in advance. In this paper, in order to solve this problem, compound noun decomposition problem is defined as tag sequence labeling problem and compound noun decomposition method to use syllable unit embedding and deep learning technique is proposed. To recognize unregistered unit nouns without constructing unit noun dictionary, compound nouns are decomposed into unit nouns by using LSTM and linear-chain CRF expressing each syllable that constitutes a compound noun in the continuous vector space.
In this paper, we propose a word spacing system which can be performed with just a small memory. We focus on significant memory reduction while maintaining the performance of the system as much as the latest studies. Our proposed method is based on the theory of Hidden Markov Model. We use only probability information not adding any rule information. Two types of features are employed: 1) the first features are the spacing patterns dependent on each individual syllable and 2) the second features are the values of transition probability between the two syllable-patterns. In our experiment using only the first type of features, we achieved a high accuracy of more than 91% while reducing the memory by 53% compared with other systems developed for mobile application. When we used both types of features, we achieved an outstanding accuracy of more than 94% while reducing the memory by 76% compared with other system which employs bigram syllables as its features.
Annual Conference on Human and Language Technology
/
1997.10a
/
pp.255-260
/
1997
일반적으로 한국어는 띄어쓰기 단위인 어절이 형태소 분석의 입력 단위로 쓰이고 있다. 그러나 실제 영역(real domain)에서 사용되는 텍스트에서는 띄어쓰기 오류와 같은 비문법적인 형태도 빈번히 쓰이고 있다. 따라서 형태소 분석 과정에 선행하여 적합한 형태소 분석의 단위를 인식하는 과정이 이루어져야 한다. 본 연구에서는 한국어의 음절 특성을 이용한 형태소분석을 위한 어절 인식 방법을 제안한다. 제안하는 방법은 사전에 기반하지 않고 원형코퍼스(raw corpus)로부터의 필요한 음절 정보 및 어휘정보를 추출하는 방법을 취하므로 오류가 포함된 문장에 대하여 견고한 분석이 가능하고 많은 시간과 노력이 요구되는 사전구축 및 관리 작업을 필요로 하지 않는다는 장점이 있다. 한국어 어절 인식을 위하여 본 논문에서는 세가지 확률 모텔과 동적 프로그래밍에 기반한 인식 알고리즘을 제안한다. 제안하는 모델들을 띄어쓰기 오류문제와 한국어 복합명사 분석 문제에 적용하여 실험한 결과 82-85%정도의 인식 정확도를 보였다.
Annual Conference on Human and Language Technology
/
2003.10d
/
pp.227-231
/
2003
한극 문서의 자동 띄어쓰기는 웹 문서와 검색 질의어, 법률안 제목, 문자 메시지 등에서 띄어쓰지 않은 문장에 대해 자동으로 공백을 삽입해 주는 기능이다. 기존의 자동 띄어쓰기 기법은 각 문자 경계마다 공백 삽입 일치도를 비교하는 방식으로 평가되었으나, 실제 응용 시스템에서는 어절 인식 정확률이 높고, 공백의 과생성 오류가 적으며, 바이그램 데이터 크기가 작아야 한다. 본 논문에서는 이러한 요구 조건에 따라 새로운 평가 기준을 제시하고, 이에 따라 기존 방법보다 바이그램 데이터 크기가 매우 작고, 정확률이 높은 자동 띄어씌기 방법을 제안하였다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.605-607
/
2018
본 논문에서는 음절 임베딩과 양방향 LSTM-CRF 모델을 이용한 한국어 문장 자동 띄어쓰기 시스템을 제안한다. 문장에 대한 자질 벡터 표현을 위해 문장을 구성하는 음절을 Unigram 및 Bigram으로 나누어 각 음절을 연속적인 벡터 공간에 표현하고, 양방향 LSTM을 이용하여 현재 자질에 양방향 자질들과 의존성을 부여한 새로운 자질 벡터를 생성한다. 이 새로운 자질 벡터는 전방향 신경망과 선형체인(Linear-Chain) CRF를 이용하여 최적의 띄어쓰기 태그 열을 예측하고, 생성된 띄어쓰기 태그를 기반으로 문장 자동 띄어쓰기를 수행하였다. 문장 13,500개와 277,718개 어절로 이루어진 학습 데이터 집합과 문장 1,500개와 31,107개 어절로 이루어진 테스트 집합의 학습 및 평가 결과는 97.337%의 음절 띄어쓰기 태그 분류 정확도를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.