• Title/Summary/Keyword: sycamore

Search Result 25, Processing Time 0.026 seconds

Seasoning of Commercial Wood Using Solar Energy (태양에너지를 이용한 유용목재의 건조)

  • Jung, Hee-Suk;Lee, Hyoung-Woo;Lee, Nam-Ho;Lee, Sang-Bong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.10-39
    • /
    • 1988
  • This study investigated the temperatures and relative humidities in the semi-greenhouse type solar dryer with a black rock-bed heat storage and without heat storage and outdoor temperature and relative humidity at 9 a.m. and 2 p.m.. A comparison was made of the drying rates, final moisture contents, moisture content distributions, casehardening stresses, drying defects, volumetric shrinkage of dried lumber for solar- and air-drying from the green condition of mixtures of Douglas-fir, lauan, taun, oak and sycamore 25mm- and 50 mm-thick lumber during the same period for four seasons, and heat efficiencies for solar dryer with and without the heat storage for saving of heat energy and the cost of lumber drying using the solar energy. The results from this study were summarized as follows: I. The mean weekly temperatures in the solar dryers were 3 to $6^{\circ}C$ at 9 a.m. and 9 to $13^{\circ}C$ at 2 p.m. higher than mean outdoor temperature during all the drying period. 2. The mean weekly relative humidities in the solar dryers were about 1 to 19% at 9 a.m. higher than the outdoor relative humidity. and the difference between indoor and outdoor relative humidity in the morning was greater than in the afternoon. 3. The temperatures and relative humidities in the solar dryer with and without the heat storage were nearly same. 4. The overall solar insolation during the spring months was highest and then was greater in the order of summer, atumm, and winter month. S. The initial rate of solar drying was more rapid than that of air drying. As moisture content decreased, solar drying rate became more rapid than that of air drying. The rates of solar drying with and without heat storage were nearly same. The drying rate of Douglas-fir was fastest and then faster in the order of sycamore, lauan, taun and oak. and the faster drying rate of species, the smaller differences of drying rates between thicknesses of lumber. The drying rates were fastest in the summer and slowest in the winter. The rates of solar drying during the spring were more slowly in the early stage and faster in the later stage than those during the autumn. 6. The final moisture contents were above 15% for 25mm-thick air dried and about 10% for solar dried lumber, but the mean final MCs for 50mm-thick lumber were much higher than those of thin lumber. The differences of final MC between upper and lower course of pile for solar drying were greater than those of pile for air drying. The differences of moisture content between the shell and the core of air dried lumbers were greater than those of solar dried lumber, smallest in the drying during summer and greatest in the drying during winter among seasons. 7. Casehardening stresses of 25mm- and 50mm-thick dried lumber were slight, casehardening stress of solar dried lumber was severer than that of air dried lumber and was similar between solar dried lumber with and without heat storage, Casehardening stresses of lumber dried during spring were slightest and then slighter in the order of summer, autumn, and winter. Casehardening stresses of Douglas -fir, sycamore and lauan were slight, comparing with those of taun and oak. 8. Maximum initial checks of 25mm-thick lumber occurred above and below fiber saturation point and those of 50mm-thick lumber occurred in the higher moisture content than thin lumber. As the moisture content decreased, most of checks were closed and didn't show distinct difference of the degree of checks among drying methods. The degree of checks were very slight in case of Douglas-fir and lauan, and severe in case of taun and oak. The degree of checks for 50mm-thick lumber were severer than those for 25mm-thick lumber. 9. The degree of warpage showed severe in case of oak and sycamore lumber, but no warping was found in case of Douglas-fir, lauan and taun. 10. The volumetric shrinkages of taun and oak were large and medium in case of Douglas-fir, lauan and sycamore. 11. Heat efficiencies of solar dryer with heat storage were 6.9% during spring, 7.7% during summer, 12.1% during autumn and 4.1% during winter season. Heat efficiency of solar dryer with heat storage was slightly greater than that of without heat storage. As moisture content of lumber decreased, heat efficiency decreased.

  • PDF

Effect of Temperature on the Development of Sycamore Lace Bug, Corythucha cilita (Hemiptera : Tingidae) (버즘나무 방패벌레의 발육(發育)에 미치는 온도(溫度)의 영향(影響))

  • Park, Ji-Doo;Kim, Chul-Su;Lee, Gil-Sang;Park, Young-Seuk;Kang, Seung-Ho;Shin, Sang-Chul
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.4
    • /
    • pp.555-561
    • /
    • 1999
  • The development of sycamore lace bug, Corythucha ciliata, had been studied at four constant temperature levels of 15, 20, 25, and $30^{\circ}C$. And characteristics of its oviposition were studied at field. Developmental periods of eggs were 39.1, 17.1, 9.8, and 8.0 days, those of nymphs were 58.5, 23.8, 14.5, and 10.8 days, hatchabilities of eggs were 42.0, 78.5, 83.3, and 78.7%, and survival rates of nymphs were 14.7. 60.5, 75.7, and 48.9% at different temperatures of 15, 20, 25, and $30^{\circ}C$. Lower development threshold temperature and the effective accumulative temperature above the threshold required to complete development from egg to nymph were $11.5^{\circ}C$ and 344.8 degree days, respectively. The optimum temperature was estimated to be $25^{\circ}C$ for developments of egg and nymph. The longevities of adults were 41.0 days and 37.0 days for female and male, respectively.

  • PDF

Effects of Temperatures on Development and Reproduction of the Sycamore Lace Bug, Corythucha ciliata (Hemiptera, Tingidae) (버즘나무방패벌레(노린재목, 방패벌레과) 발육과 생식에 미치는 온도의 영향)

  • 김길하;최미현;김정화
    • Korean journal of applied entomology
    • /
    • v.38 no.2
    • /
    • pp.117-121
    • /
    • 1999
  • Development and reproduction of the sycamore lace bug, Corythucha ciliata, were investigated under different temperature regimes. Duration of development from egg to pre-adult of the sycamore lace bug measured seven temperatures ranged from 54.0 days at 18$^{\circ}$C to 17.9 days at 33$^{\circ}$C. Development was not successful at 15$^{\circ}$C and 35$^{\circ}$C. Developmental zero point and total effective temperature for development of egg, nymphal, and complete development were 1 1 .O, 10.9, ll.l$^{\circ}$C and 150.3, 230.6, 376.1 degree-days, respectively. Longevities of adult females varied to temperature from 51.8 days at 18$^{\circ}$C to 17.2 days at 33$^{\circ}$C. The average fecundity per female was greater at 25$^{\circ}$C and 28$^{\circ}$C compared with at other temperatures. The intrinsic rate of natural increase (r,) and net reproduction rate (R,) were highest at 28$^{\circ}$C as 0.170 and 73.25, respectively. As a result, optimum ranges of temperature for C. ciliata growth were between 25$^{\circ}$C and 28$^{\circ}$C.

  • PDF

On the Proper Transplanting Time of Platanus occidentalis L. (Platanus occidentalis L. 대경목(大徑木)의 이식적기(移植適期)에 관(關)하여)

  • Lee, Jyung Seuk;Oh, Kwang In
    • Journal of Korean Society of Forest Science
    • /
    • v.40 no.1
    • /
    • pp.57-62
    • /
    • 1978
  • This study was carried out to determine the proper transplanting time of Platanus occidentalis L. (plane tree, sycamore) with 5 to 6 cm and 25 to 30 cm in diameter of breast height at the forest nursery of Chonnam National University in 1977. For that purpose, the experiment of the time of transplantation, and the moisture content and soluble sugar were analysed. The results are as follows: 1. Both its rooting and growth were slightly different in the period of January to early April (before bud-break), but remarkably declined after its bud-break (mid-April to May). 2. And also, its moisture content and soluble sugar were slightly different (January to early April), but, on the other hand, considerably increased in the content of moisture and sharply decreased in soluble sugar after bud-break (mid-April to May). 3. In comparision with healthy trees, rooting and growth of trees infected with Cankers were unusually retarded and its moisture content and soluble sugar were much less. 4. The proper time to plant sycamore was recognized to be the period of November to March, since the higher amounts of soluble sugar and the lesser amounts of moisture in that period. 5. The sudden exposure to the sun of the boles of diseased and wounded trees could be in death in case of sun-scald on the side of south-west. 6. Pruning wounds should be treated with an antiseptic, as soon as they are made, to prevent entrance of decay or disease while the wound is healing. 7. The wound and sun-scald can be presented by covering the trunk with straw ropes before transplantations.

  • PDF

Ecological Characteristics and Insecticidal Susceptibility of Sycamore Lace Bug, Corythucha ciliata Say (Hemiptera: Tingidae) (버즘나무방패벌레 (Corythucha ciliata Say)의 생태적 특성 및 살충제감수성)

  • Song, Cheol;Cho, Kwang-Yun
    • Journal of Life Science
    • /
    • v.10 no.2
    • /
    • pp.164-168
    • /
    • 2000
  • To understand the biological characteristics of Corythucha ciliata occurring in Korea, developmental periods and its susceptibility to several insecticides were examined under growth chamber condition at $25^{\circ}C$. It took 11.1 day from egg to hatch. And duration of each stage up to the 5th nymph after hatching was 4.0, 2.1, 2.0, 2.9, and 4.0 days, respectively. Total duration from egg to adult was 26.1 days, preoviposition period was 12.2 days, and average number of eggs laid by a female was 83.0. Sex ratio of female was 51.6% and lifespan of female adult was 43.2% days. LC50 value of deltamethrin and esfenvalerate were 0.8 and 0.9 ppm, respectively. Insecticidal effects were better in pyrethroids than organophosphates and carbamates.

  • PDF

A Study on the Properties of Plywoods Constructed by Sycamore and Lauan Veneer (푸라타누스와 나왕단판(羅王單板)을 구성(構成)한 합판(合板)의 성질(性質)에 관(關)한 연구(硏究))

  • Lee, Phil Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.30 no.1
    • /
    • pp.8-18
    • /
    • 1976
  • This study was carried out to exploit and utilize the exotic American Sycamore(Platanus occidentalis) grown in Korea as a veneer species for plywood manufacture. At present most parts of veneer Legs used in Korea were depended entirely upon the gonus Shorea woods(lauan logs) imported from Southeast Asia region. To decrease manufacturing cost and save imported lauan veneer logs, the effects on properties affecting to the six types of plywood made from proper veneer constructions composed by domestic American Sycamore and imported lauan veneers were compared and discussed. The study has important meanings for the promotion of plywood manufacture by domestic materials. Important items dealt with this study were dry and wet shear strength, moisture contents, specific gravties, and bending strength. By the results and discussions it may be summarized as follows: 1) In dry shear strength platanus(sycamore) core lauan plywood was shown most excellent strong results, and next orders were all lauan plywood, platanus faced lauan plywood, lauan core platanus plywood, lauan faced platanus plywood, and all platanus plywood. There was no difference between platanus core lauan plywood and all lauan plywood, but the differences between those plywoods and the other types of plywood were recognized. 2) In wet shear strength platanus core lauan plywood was shown excellent result the same as dry strength. The difference between platanus core lauan plywood and the other types of plywood was shown, but among the other types of plywood except platanus core lauan plywood were not recognized. 3) The differences among moisture contents according to the veneer construction were not recognized. 4) The plywood constructed by two or more sheets of lauan veneer was shown lower specific gravities than the plywood constructed by two or more sheets of platanus veneer. It is believed that this tendency due to the original specific gravities of veneer before construction. 5) The differences among specific gravities of lauan core platanus plywood, all platanus plywood and lauan faced platanus plywood were not recognized, and like this analyzed result among platanus core lauan plywood, all lauan plywood and platanus faced lauan plywood were not recognized. Accordingly it is believed that the differences are not shown among the plywood constructed by two or more veneers of same species. 6) In bending strength platanus core lauan plywood was shown most excellent values. Next orders were all lauan plywood, platanus faced lauan plywood and the other types of plywood. The differences among the plywood constructed by two or veneers of lauan were shown, but not shown among the plywood constructed by tow or more veneers of platanus.

  • PDF

Studies on the Properties of the Fiberboard - I. Hardboard (S-1-S) from Juvenile Wood of Sycamore (Platanus orientalis L.) (섬유판(纖維板)의 재질(材質)에 관한 연구(硏究) - I. 유령(幼齡)버즘나무를 원료(原料)로 한 경질섬유판(硬質纖維板))

  • Min, Du-Sik;Shin, Dong So
    • Journal of Korean Society of Forest Science
    • /
    • v.26 no.1
    • /
    • pp.57-65
    • /
    • 1975
  • This study was carried out to examine the effect of manufacturing factors on physical properties of hardboard (S.I.S) made from the juvenile wood of sycamore (Platanus orientalis L.) The results obtained may be summarized as follows: 1. The difference among the yields of pulp treated with preheat time (defibrate condition) was significant in those of treatments. There was no difference in the yield of pulp treated with defibrate time. The yields of pulp on the tree age classes were shown the difference by 2<4<6<8 years. 2. The specific gravities of hardboard that were treated with hot pressing conditions showed us significantly in those of treatments. There was no difference on the specific gravities among hardboards, treated with resin and wax contents. But in all cases of the specific gravities satisfied the standard which specified the KS F 3203 (Hardboard) 3. The moisture contents of hardboard satisfied the standard which calls for 13-percent below. There were difference in moisture contents between hardboard, treated with preheating time, resin and wax contents and hot pressing conditions. And the moisture contents of hardboard on the tree age classes showed the difference by 2<4<6<8 years. 4. The water absorption and thickness swelling of hardboard treated with defibrations, resin and wax contents, and hot pressing conditions were significant in those of treatments. And the water absorption and thickness swelling of hardboard on the tree age classes showed us the significant difference by 8<6<4<2 years. 5. The difference among the flexural strength in using tested three conditions showed us the difference by defibration$200kg/cm^2$) of hardboard, it is likely to be recommened that the juvenile wood of sycamore is valuable for the raw materials of hardboards.

  • PDF

Interactive Effects of Ozone and Light Intensity on Platanus occidentalis L. Seedlings

  • Kim, Du-Hyun;Han, Sim-Hee;Lee, Kab-Yeon;Kim, Pan-Gi
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.5
    • /
    • pp.508-515
    • /
    • 2008
  • Sycamore (Platanus occidentalis L.) seedlings were grown under low light intensity and ozone treatments to investigate the role of the light environment in their response to chronic ozone stress. One-year-old seedlings of Platanus occidentalis L. were grown in pots for 3 weeks under low light (OL, $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and high light (OH, $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) irradiance in combination with 150 ppb of ozone fumigation. After three weeks of ozone and light treatment, seedlings were placed in ozone free clean chamber for 3 weeks for recovery from ozone stress with same light conditions to compare recovery capacity. Ozone fumigation determined an impairment of the photosynthetic process. Reduction of leaf dry weight (14%) and shoo/root ratio (17%) were observed in OH treatment. OL treatment also showed severe reductions in leaf dry weight and shoot/root ratio by 48% and 36% comparing to control, respectively. At the recovery phase, OH-treated plants recovered their biomass, whereas OL-treated plant showed reduction in leaf dry weight (52%) and shoot/root ratio (49%). OH-treated plants reached similar relative growth rate (RGR) comparing to control, whereas OL-treated plants showed lower RGR in stem height. However, there were no significant differences in response to those treatments in stem diameter RGR at the recovery phase. Ozone treatment produced significant reduction of net photosynthesis in both high and low light treatments. Carboxylation efficiency and apparent quantum yield in OL-treated plants showed significant reductions rate to 10% and 45%, respectively. At the recovery stage, ozone exposed seedlings under high light had similar photosynthetic capacity comparing to control plants. Antioxidant enzymes activities such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR) were increased in ozone fumigated plants only under low light. The present work shows that the physiological changes occur in photosynthesis-related parameters and growth due to ozone and low light stress. Thus, low light seems to enhance the detrimental effects of ozone on growth, photosynthesis, and antioxidant enzyme responses.

Control effect of the newly developed insecticidal protectant on Sycamore lace bug, Corythucha ciliata (Hemiptera : Tingidae) (버즘나무 방패벌레에 대한 신규 합성 물질의 방제효과)

  • Park, Hyean-Cheol;Kim, Keun-Ki;Kim, Yong-Gyun;Lee, Sang-Mong;Son, Hong-Joo;Choi, In-Soo;Shin, Taek-Soon
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.828-830
    • /
    • 2007
  • To determine the effects of newly developed insecticide (Ultra) on Sycamore lace bug (Corythucha ciliata), ten leaf discs were sprayed with the Ultra solution including the other selected commercialized insecticide solutions such as Carbaryl and Pirimicarb, and also with a water-sprayed control. According to the results, the control effect of Ultra on the adults and immatures was respectively 98.9% and 97.5% after 48hr, and the corresponding values were higher than that of the other tested insecticides (i.e Carbaryl showed 84.6% for adults and 85.6% for immatures; Pirimicarb showed 83.0% for adults and 90.7% for immatures). For the Susceptibility test, LC$_{50}$ value of Ultra showed the lowest as 1.5ppm, the value of Carbaryl and Pirmicarb were 3.7 ppm and 30.4 ppm, respectively. Therefore, the insecticidal effects were better for the newly developed insecticide than the commercialized insecticides.

Studies on the Extending of Plywood Adhesives used Foliage Powder (낙엽분말(落葉粉末)을 이용(利用)한 합판용(合板用) 접착제(接着劑)의 증량(增量)에 관(關)한 연구(硏究))

  • Kim, Jong-Man;Bark, Jong-Yeol;Lee, Phil-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.42 no.1
    • /
    • pp.83-100
    • /
    • 1979
  • It was planned and performed to study the possibility on the use of inexpensive and easily acquirable foliage powder, which processed by pulverizing after dried, instead of imported expensive wheat flour for the extending of plywood adhesives. Pine leaves of softwood trees, Poplar, Oak and Sycamore leaves of broad leaved species were selected and harvested to pulverize into the minute foliage powder. The harvested foliages from each selected species were pulverized into 40 mesh particles after dried at $100{\sim}105^{\circ}C$ condition during 24 hours in drying oven. To compare the extending effect of plywood adhesives with these foliage powders 100 mesh wheat flour using at current plywood industry was also prepared. Foliage powder and wheat flour were extended into 10, 20, 30, 50 and 100% to the urea and phenol formaldehyde resin. After plywoods were processed by the above extending method shear strength of extended plywoods were analyzed and discussed. The results obtained at this study are as follows: 1) Among 10% extensions of urea formaldehyde resin plywood, dry shear strength of plywood extended by wheat flours was the highest and that of non-extended plywood the next. Plywood extended with foliage powder showed the lowest dry shear strength. The order of dry shear strength of plywoods extended by foliage powder was that of Oak foliage powder extension, the best, that of Sycamore, that of Pine, and that of Poplar. 2) Among 20% extensions of urea formaldehyde resin plywood, plywood extended by wheat flour showed the highest dry shear strength, and the next was plywood by Poplar foliage powder. All these two showed higher dry shear strength than non-extension plywoods. Except Poplar, dry shear strength of foliage powder extension plywoods was bad, but the order of dry shear strength of plywoods extended by foliage powder was Pine, Poplar and Oak. 3) In the case of 30% extensions of urea formaldehyde resin plywood, dry shear strength of wheat flour extension was the highest and non-extension the next. Dry shear strength of foliage powder extension plywoods was poor with a rapid falling-off in strength. 4) Among 50% and 100% extensions of urea formaldehyde resin plywood, only wheat flour showed excellent dry shear strength. In the case of foliage powder extension, low dry shear strength showed at the 50% extension of Pine and Poplar, and plywoods of 50% extension of Oak foliage powder delaminated without measured strength. All plywoods of 100% foliage powder extension delaminated, and then shear strength were not measured. 5) Among wet shear strength of 10% extensions of urea formaldehyde resin plywood, wheat flour extension was the highest as in the case of dry shear strength, and non-extension plywood the next. Except Poplar foliage extension, all foliage powder extension plywoods showed low shear strength. 6) Wet shear strength of plywoods of 20% extension lowered in order of non-extension plywood, plywood of wheat flour extension and plywood of foliage powder extension, but other plywoods of foliage powder extension except plywoods of Poplar and Oak foliage powder extension delaminated. 7) Wet shear strength of 30% or more extension of urea formadehyde resin plywood were weakly measured only at 30% and 50% extension of wheat flour, and wet shear strength of plywoods extended by foliage powder were not measured because of delaminating. 8) Dry shear strength of phenol formaldehyde plywoods extended by 10% wheat flour was the best, and shear strength of plywoods extended by foliage powder were low, but the order was Oak, Poplar, and Pine. Plywood of Sycamore foliage powder extension delaminated. 9) In the case of 20% extensions of phenol formaldehyde resin, dry shear strength of plywood extended by wheat flour was the best, but plywood of Pine foliage powder extension the next, and the next order was Oak and Poplar foliage powder. Plywood of Sycamore foliage powder extension delaminated. 10) Among dry shear strength of 30% extensions of phenol formaldehyde plywood, that of Pine foliage powder extension was on the rise and more excellent than plywood of wheat flour extension, but Poplar and Oak showed the tendency of decreasing than the case of 20% extension. Plywood of Sycamore foliage powder extension delaminated. 11) While dry shear strength of 50% and 100% extension plywoods were excellent in the case of Pine foliage powder and wheat flour extension, that of hardwood such as Poplar, Oak, and Sycamore foliage powder extension were not measured because of delaminating. 12) As a filler the foliage powder extension of urea formaldehyde resin is possible up to 20% with Poplar foliage powder. And also as an extender for phenol formaldehyde resin, Pine foliage powder can be added up to the same amount as that in the case of wheat flour.

  • PDF