• Title/Summary/Keyword: switching power loss

Search Result 780, Processing Time 0.033 seconds

A Study on Input Current Waveform Analysis for Step Up-Down AC-DC Converter of High Power Factor added Electric Isolation (고역률 스텝 업-다운 절연형 AC-DC 컨버터의 입력전류 파형분석에 관한 연구)

  • Kwak, Dong-Kurl;Kim, Choon-Sam;Lee, Bong-Seob;Kim, Sang-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.34-36
    • /
    • 2008
  • This paper is given a full detail of mathematical analyses of input current for novel active type power factor correction(PFC) AC-DC converter of step up-down added electric isolation. These are compared with harmonics components of input current for a conventional PFC converter of electric isolation type. The proposed PFC converter is constructed in using a new loss-less snubber circuit to achieve a soft switching of control device. Also the proposed converter for discontinuous conduction mode(DCM) eliminates the complicated circuit control requirement and reduces the size of components. The input current waveform in the proposed converter is got to be a sinusoidal form of discontinuous pulse in proportion to magnitude of ac input voltage under the constant duty cycle switching. Therefore, input power factor is nearly unity and the control method is simple. Particularly, the stored energy of loss-less snubber capacitor is recovered with input side and increases input current from resonant operation. The result is that input power factor of the proposed converter is higher than that of a conventional PFC converter. Some simulative results on computer and experimental results are included to confirm the validity of the analytical results.

  • PDF

A Trade-Off between the Efficiency, Ripple and Volume of a DC-DC Converter

  • Taherbaneh, Mohsen;Rezaie, Amir H.;Ghafoorifard, Hasan;Mirsamadi, Maddad;Menh, Mohammad B.
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.621-631
    • /
    • 2011
  • In space qualified DC-DC converters, optimization of the following electrical characteristics is of greater interest in comparison with other specifications; power loss/efficiency, output voltage ripple and volume/weight. The main goal of this paper is to present an appropriate solution for optimizing the above mentioned characteristics. For this purpose, a comprehensive power loss model of a DC-DC converter is fully developed. Proper models are also demonstrated for assessment of the output voltage ripple and the utilized transformer volume as the bulkiest component in a DC-DC converter. In order to provide a test bed for evaluation of the proposed models, a 50W push-pull DC-DC converter is designed and implemented. Finally, a novel cost function with three assigned weight functions is proposed in order to have a trade-off among the power loss, the output voltage ripple and the utilized transformer volume of the converter. The cost function is optimized for applications in which volume has the highest priority in comparison with power loss and ripple. The optimization results show that the transformer volume can be decreased by up to 51% and this result is verified by experimental results. The developed models and algorithms in this paper can be used for other DC-DC converter topologies with some minor modifications.

Standby Power Reduction Technique due to the Minimization of voltage difference between input and output in AC 60Hz (대기전력 최소화를 위한 교류전압 입력에 따른 저전압 구동회로 설계)

  • Seo, Kil-Soo;Kim, Ki-Hyun;Kim, Hyung-Woo;Lee, Kyung-Ho;Kim, Jong-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1018-1019
    • /
    • 2015
  • Recently, standby power reduction techniques of AC/DC adaptor were developed, consuming power almost arrived to 300mW level. The standby power losses are composed of the input filter loss 11.8mW, the control IC for AC/DC adaptor 18mW, the switching loss 9.53mW and the feedback loss 123mW. And there are the standby power reduction techniques. In this paper, in order to reduce the standby power of SMPS more, the loss due to a voltage difference between input and output is reduced by the control circuit which is composed of the low voltage driving circuit and voltage regulator. The low voltage driving circuit operates on the low voltage of input and off the high voltage. The low voltage driving IC was produced by the $1.0{\mu}m$, high voltage DMOS process.

  • PDF

Parallel Resonant Soft Switching Inverter based on Delta-Modulation Method (Delta-Modulation 기법을 적용한 병렬 공진형 소프트 스위칭 인버터)

  • Choi, Kwang-Soo;Kim, Young-Ho;Kim, Jun-Gu;Won, Chung-Yuen;Jung, Yong-Chae;Oh, Dong-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.212-214
    • /
    • 2009
  • In this paper, we have proposed a Parallel Resonant Soft Switching Inverter based on Delta-Modulation Method. The conventional full-bridge inverter generates switching losses due to the hard switching. The proposed inverter operates soft switching using a DC-link switch and resonant circuit. So, all of the switches in the proposed inverter operates soft switching. Therefore the proposed inverter can reduce not only switching loss but also capacity and size of passive devices due to the resonant elements. The validity of the proposed inverter is verified thorough the theoretical analysis and simulation.

  • PDF

A New ZVT-PWM Converter using Active Resonant Snubber (액티브 공진 스너버를 이용한 새로운 ZVT-PWM 컨버터)

  • Park, J.M.;Yoon, Y.T.;Kim, C.Y.;Kim, D.W.;Park, S.W.;Mun, S.P.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.262-265
    • /
    • 2003
  • In this paper, a new active snubber circuit that overcomes most of the drawbacks of the normal "zero voltage transition pulse width modulation" (ZVT-PWM) converter is proposed to contrive a new family of ZVT- PWM converter. A converter with the proposed snubber circuit can also operate at light load conditions. A design procedure of the proposed active snubber circuit is also presented. Additionally, at full output power in the proposed soft switching converter, the main switch loss is about 27[%] and the total circuit loss is about 36[%] of that in its counterpart hard switching converter, and so the overall efficiency, which is about 91[%] in the hard switching case, increases to about 97[%].

  • PDF

Chaotic Neural Networks for Optimal Reconfiguration in Distribution Systems (카오스 신경망을 이용한 배전계통 최적 구성)

  • Rhee, Sang-Bong;Kim, Kyu-Ho;Lee, Yu-Jeong;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.279-281
    • /
    • 2001
  • This paper presents a chaotic neural networks to solve the distribution feeder reconfiguration problem for loss reduction. Feeder reconfiguration problem is the determination of switching option that minimizes the power losses for a particular set of loads in distribution systems. A chaotic neural networks is used to determine the switching combinations, select the status of the switches, and find the best combination of switches for minimum loss. The proposed method has been tested on 32 bus system, and the results indicate that it is able to determine the appropriate switching options for optimal configuration.

  • PDF

Development of opto-mechanical switch (광스위치 개발)

  • Park, Kap-Seok;Choi, Shin-Ho;Jang, Eun-Sang;Kim, Seong-Il;Lee, Byeong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2464-2466
    • /
    • 1998
  • A switch is a component with two or more ports that selectively transmits, redirects, or blocks optical power in a fiber transmission line. Our switch uses rotation mechanism using stepping motor, hence the common optical fiber can scan and allign to one of the arrayed N optical fibers to provide optical path by electronic precise control. The developed switch is consisted of switching module and its control module. The performance parameters of a switching loss and a repeatability are considered very important. We performed the study to reduce the switching loss and improve the repeatability of switch. The switch can be widely used as a test instrument of optical device and of optical cable in factory, also of optical cable monitoring systems.

  • PDF

ZVS Phase Shift Full Bridge Converter Design with 2kW Output (2 kW 출력을 갖는 영전압 스위칭 위상 천이 풀 브리지 컨버터 설계)

  • Hwang, Kyu-Il;Kim, Il-Song
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.11
    • /
    • pp.523-530
    • /
    • 2018
  • It has been studied over the long time for the high efficiency and high power density of the power converter. It is possible to obtain higher power conversion efficiency and small volume by increasing switching frequency, however, the switching loss is also increased. The soft switching technique can overcome of the above deficiency. The design and analysis method for ZVS(Zero Voltage Switching) Phase Shifte Full bridge converter is presented in this paper. The power transfer depends on the phase difference between two legs of the power stage and the maximum power conversion efficiency is achieved by the optimum leakage inductance value. The waveform of the current and voltage of the operational mode is analysed and the corresponding switch status is plotted as on/off status. A ZVS full bridge converter for a communication rectifier with 2kW output power is implemented and its performance are verified through PSIM software simulation and experimental results.

A Resonance Inverter Power System for Improving Plasma Sterilization Effect (플라즈마 살균효과 향상을 위한 공진형 인버터 전원시스템)

  • Suh, Ki-Young;Mun, Sang-Pil;Jung, Jang-Gun;Kim, Ju-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.135-141
    • /
    • 2004
  • A sterilizer equipment by using electrical energy has metrits that no process of chemical and no second environmental pollution, Also, the power conversion circuit for sterilizer equipment has mertis that are reducing switching loss for soft switching topology by using zero current and zero voltage switching, and miniaturizing size of equipment. The proposed power device which has lower output current than other devices is possible to be compacted in it's size reduced it's price if the proposed power device is used for power system. Therefore, it is adapted for both less power consumption and sudden power conversion

A Study on Novel Step Up-Down DC/DC Chopper of Isolated Type with High Efficiency (새로운 고효율 절연형 스텝 업-다운 DC/DC 초퍼에 관한 연구)

  • Kwak, Dong-Kurl
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.82-88
    • /
    • 2009
  • This paper is analyzed for a step up-down DC/DC chopper of high efficiency added electric isolation. The converters of high efficiency are generally made that the power loss of the used semiconductor switching devices is minimized. To achieve high efficiency system, the proposed chopper is constructed by using a partial resonant circuit. The control switches using in the chopper are operated with soft switching by partial resonant method. The control switches are operated without increasing their voltage and current stresses by the soft switching technology. The result is that the switching loss is very low and the efficiency of the chopper is high. The proposed chopper is also added electric isolation which is used a pulse transformer. When the power conversion system is required electric isolation, the proposed chopper is adopted with the converter system development of high efficiency. The soft switching operation and the system efficiency of the proposed chopper are verified by digital simulation and experimental results.

  • PDF