• Title/Summary/Keyword: swirling

Search Result 272, Processing Time 0.018 seconds

Large Eddy Simulation for the Analysis of Practical Combustion Field (실용 연소장 해석을 위한 대 와동 모사)

  • Hwang, Cheol-Hong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.181-188
    • /
    • 2005
  • Large eddy simulation(LES) methodology used to model the isothermal swirling flows in a dump combustor and the turbulent premixed flame in a model gas turbine combustor. The LES solver was implemented on parallel computer consisting 16 processors. In isothermal flow simulation, the results was compared with that of ${\kappa}-{\varepsilon}$ model as well as experimental data, in order to verify the capability of LES code. To model the turbulent premixed flame in a gas turbine, the G-equation flamelet model was used. The results showd that LES and RANS well predicted the mean velocity field of a non-swirling flow. However, in swirling flow, LES showed a better performance in predicting the mean axial and azimuthal velocities, and the central recirculation zone than those of RANS. In a model gas turbine combustor, the operation condition of high pressure and temperature induced the different phenomena, such as flame length and flow-field information, comparing with the condition of ambient pressure and temperature. Finally, it was identified that the flame and heat release oscillations are related to the vortex shedding generated by swirl flow and pressure wave propagation.

  • PDF

Large Eddy Simulation of a High Reynolds Number Swirling Flow in a Conical Diffuser

  • Duprat, Cedric;Metais, Olivier;Laverne, Thomas
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.346-352
    • /
    • 2009
  • The objective of the present work is to improve numerical predictions of unsteady turbulent swirling flows in the draft tubes of hydraulic power plants. We present Large Eddy Simulation (LES) results on a simplified draft tube consisting of a straight conical diffuser. The basis of LES is to solve the large scales of motion, which contain most of the energy, while the small scales are modeled. LES strategy is here preferred to the average equations strategies (RANS models) because it resolves directly the most energetic part of the turbulent flow. LES is now recognized as a powerful tool to simulate real applications in several engineering fields which are more and more frequently found. However, the cost of large-eddy simulations of wall bounded flows is still expensive. Bypass methods are investigated to perform high-Reynolds-number LES at a reasonable cost. In this study, computations at a Reynolds number about 2 $10^5$ are presented. This study presents the result of a new near-wall model for turbulent boundary layer taking into account the streamwise pressure gradient (adverse or favorable). Validations are made based on simple channel flow, without any pressure gradient and on the data base ERCOFTAC. The experiments carried out by Clausen et al. [1] reproduce the essential features of the complex flow and are used to develop and test closure models for such flows.

A Study on the Flame Behavior of Whirl Eire and Pool Fire (Whirl Fire와 Pool fire의 화염 거동에 관한 연구)

  • Oh Kyu-Hyung;Kang Youn-Ok;Lee Sung-Eun
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.45-50
    • /
    • 2004
  • 4-panel of 1m height and 45cm width were fixed on the $40cm{\times}40cm$ bottom plate and the opening of the panel comer was 5cm. Diameter of stainless vessel is loom and its height is 2cm and it located at the center of the bottom plate. 78mL liquid fuel was filled in the vessel and its depth was 1cm. Flame temperature was measured with K type thermocouple, and radiation heat of flame was measured with heat flux meter. Flame height and its behavior was visualized with video camera. and mass burning rate was measured by fuel combustion time. According to the development of fire, flame swirling was begin. From the experiment the mass burning rate was larger and the height of flame was higher than the usual pool fire flame. Flame temperature and heat flux also increased far more than the pool fire. Consequently the swirling air flow through the openings between the panel and thermal buoyance contribute to increase of heat release rate, flame length and mass burning rate.

An Experimental Study of the Turbulent Swirling Flow and Heat Transfer Downstream of an Abrupt Expansion in a Circulat Pipe with Uniform Heat Flux (급확대관내에서 류유선회유동의 열전달에 관한 연구)

  • 권기린;허종철
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.138-152
    • /
    • 1996
  • Many studies of heat transfer on the swirling flow or unswirled flow in a abrupt pipe expansion are widely carried out. The mechanism is not fully found evidently due to the instabilities of flow in a sudden change of the shape and appearance of turbulent shear layers in a recirculation region and secondary vortex near the corner. The purpose of this study is to obtain data through an experimental study of the swirling flow and heat transfer downstream of an abrupt expansion in a circular pipe with uniform heat flux. Experiments were carried out for the turbulent flow nd heat transfer downstream of an abrupt circular pipe expansion. The uniform heat flux condition was imposed to the downstream of the abrupt expansion by using an electrically heated pipe. Experimental data are presented for local heat transfer rates and local axial velocities in the tube downstream of an abrupt 3:1 & 2:1 expansion. Air was used as the working fluid in the upstream tube, the Reynolds number was varied from 60, 00 to 120, 000 and the swirl number range (based on the swirl chamber geometry, i.e. L/d ratio) in which the experiments were conducted were L/d=0, 8 and 16. Axial velocity increased rapidly at r/R=0.35 in the abrupt concentric expansion turbulent flow through the test tube in unswirled flow. It showed that with increasing axial distance the highest axial velocities move toward the tube wall in the case of the swirling flow abrupt expansion. A uniform wall heat flux boundary condition was employed, which resulted in wall-to-bulk temperatures ranging from 24.deg. C to 71.deg. C. In swirling flow, the wall temperature showed a greater increase at L/d=16 than any other L/d. The bulk temperature showed a minimum value at the pipe inlet, it also exhibited a linear increase with axial distance along the pipe. As swirl intensity increased, the location of peak Nu numbers was observed to shift from 4 to 1 step heights downstream of the expansion. This upstream movement of the maximum Nusselt number was accompanied by an increase in its magnitude from 2.2 to 8.8 times larger than fully developed tube flow values.

  • PDF

A Study of Swirling Flow in a Cylindrical Tube Port 1, Velocity Profiles (수평 원통관내에서 Swirling Flow의 유동에 관한 연구(I))

  • Medwell, J.O.;Chang, T.H.;Kwon, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.4
    • /
    • pp.265-275
    • /
    • 1989
  • An experimental study of decaying swirl air flow has been obtained by tangential inlet in a straight tube with Reynolds number range 20,000~40,000. The friction factor, swirl angle, velocity profiles and turbulent intensity are measured by using micro-manometer and hot-wire anemometer. It is found that the swirl flow behaviors depend on the swirl intensity along the test tube.

  • PDF

A PRELIMINARY STUDY ON THE EFFECT OF SLANTED GROOVE MIXER (SGM) ON THE PERFORMANCE OF A PEM FUEL CELL (기울어진 그루브 믹서가 고분자 전해질 연료전지 성능에 미치는 영향에 대한 기초연구)

  • Yun, S.C.;Park, J.W.;Kang, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.93-96
    • /
    • 2009
  • In the cathode channel of a PEM fuel cell, the local concentration of oxygen near the gas diffusion layer (GDL) decreases in streamwise direction due to chemical reactions, which degrades the efficiency of the oxygen consumption and overall fuel cell efficiency. We numerically studied the influence of the swirling flow generated by a slanted groove mixer (SGM) on the concentration distribution of oxygen. We found that the swirling flow can increase the concentration of oxygen near the GDL, and subsequently improves the oxygen consumption rate.

  • PDF

Parametric Study on Combustion Characteristics of CNG Fuel (연소실 매개변수에 따른 천연가스 연소 특성)

  • Lee, Seang-Wock;Song, Young-Mo;Baik, Doo-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.513-517
    • /
    • 2008
  • A parametric study was made to understand the fundamentals of combustion of CNG fuel in a constant volume chamber in the respect of swirl effect, and the numbers of spark ignition. Optical devices were applied for the visualization of the physics of combustion, and combustion pressures and exhaust emission were measured at several equivalence ratios by controlling speeds of a swirling motor. When the speed of a swirling motor was raised the combustion conditions were improved. The corresponding maximum combustion pressure and heat release rate were increased and the speed of flame propagation was getting faster. This research may contribute to improve the performance of CNG engine and reduce emissions in future.

Experimental Study on Turbulent Characteristics of Swirling Flow in 90$^{\circ}$ Degree Circular Tube by Using a PIV Technique (PIV기법을 이용한 원헝단면을 갖는 90$^{\circ}$ 곡관내의 선회유동의 난류특성에 관한 실험적 연구)

  • Chang Tae-Hyun;Lee Hae Soo
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.2
    • /
    • pp.38-46
    • /
    • 2003
  • An experimental investigation was performed to study the turbulent characteristics of swirling flow a 90$^{\circ}C$ circular tube for Re = 10,000, 15,000 and 20,000. 2D-PIV(Particle Image Velocimetry)technique was employed to measure the fluctuation velocity field. The results include spatial distributions of mean velocity vectors, turbulence intensity and turbulence kinetic energy. The axial and radial turbulence intensities, and kinetic energy profiles show double-peak structures in the inlet region of the 90 degree bend and the profiles are disappeared along the test tube with decaying the swirl intensity.

  • PDF

Dynamic Large Eddy Simulation of the Vortex Breakdown of Swirling Flow using MPI Parallel Technique (Dynamic Large Eddy Simulation과 MPI병렬 계산 기법을 이용한 스월 유동에서의 Vortex Breakdown에 관한 연구)

  • Sung Hong Gye
    • Journal of computational fluids engineering
    • /
    • v.6 no.1
    • /
    • pp.31-39
    • /
    • 2001
  • 연소실 안으로 분출되는 스월 유동의 vortex breakdown mechanism에 대한 연구를 하였다. 3차원 유한 체적기법과 Runge-Kutta 시간 적분법이 적용되었으며, 난류모델은 dynamic large eddy simulation (DLES)이 적용되었다. 계산 시간의 효율성과 기억용량을 효과적으로 사용하기 위하여 message passing interface (MPI) 병렬계산 기법이 적용되었다. 스월 난류 유동에 있어서 vortex breakdown 거동을 가시적으로 표착 하였는데, 이는 스월 유동에 의한 난류 응력 증대, 난류 생성/소산율 증대 및 혼합율 증대에 대한 실험적 근거를 뒷받침하는 매우 중요한 결과이다. 또한 평균 속도와 난류 운동에너지에 대한 계산 결과도 실험 결과와 비교하였다.

  • PDF