• Title/Summary/Keyword: swirling

Search Result 272, Processing Time 0.02 seconds

A Review on Swirling Flow by Using Flow Visualization Techniques in the Circular Tubes (원형관 내에서 유동가시화 기법을 이용한 선회유동에 관한 연구고찰)

  • Chang, Tae-Hyun;Doh, Deog-Hee;Lee, Kwoon-Soo
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.3
    • /
    • pp.12-21
    • /
    • 2010
  • Swirling flows are found in very wide range of applications, for examples, cyclone separators, spraying machines, heat exchangers and jet pumps, ect. Relatively, little work has been done on the swirl flow using flow visualization techniques. This study deals with many visualization techniques to study on swirling flow. These techniques are related to oil films methods, smoke, dye liquids, liquid crystal, stroboscope light, smoke wire, white light, naphthalene sublimation, LDV(lase doppler Velocimetry) and PIV(particle image velocimetry). The present work has handled single, annular, carved tube, swirl expansion and swirl wake using several visualization methods in the vertical and horizontal circular tube.

Review of Experimental Studies on Swirling Flow in the Circular Tube using PIV Technique

  • Chang, Tae-Hyun;Nah, Do-Baek;Kim, Sang-Woo
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • The study of swirling flow is of technical and scientific interest because it has an internal recirculation field, and its tangential velocity is related to the curvature of streamline. The fluid flow for tubes and elbow of heat exchangers has been studied largely through experiments and numerical methods, but studies about swirling flow have been insufficient. Using the particle image velocimetry(PTV) method, this study found the time averaged velocity distribution with swirl and without swirl along longitude sections and the results appear to be physically reasonable. In addition, streamwise mean velocity distribution was compares with that of other. Furthermore, other experimental investigation was performed to study the characteristics of turbulent water flow in a horizontal circular tube by using liquid crystal. 2D PIV technique is employed for velocity measurement and liquid crystal is used for heat transfer experiments in water. Temperature visualization was made quantitatively by calibrating the colour of the liquid crystal versus temperature using various approaches.

Evaluation of the Anisotropic k - ${\epsilon}$ Turbulence Model by the Numerical Analysis of Axisymmetric Swirling Turbulent Flow (축대칭 선회난류의 수치해석에 의한 비등방 k - ${\epsilon}$ 난류모델의 評價)

  • Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.39-44
    • /
    • 1996
  • To overcome weak poinks of the standard k-${\varepsilon}$ turbulence model when applied to complex turbulent flows, various modified models were proposed. But their effects are confined to special flow fields. They have still some problems. Recently, an anisotropic k-${\varepsilon}$ turbulence model was also proposed to solve the drawback of the standard k-${\varepsilon}$ turbulence model. This study is concentrated on the evaluation of the anisotropic k-${\varepsilon}$ turbulence model by the analysis of axisymmetric swirling turbulent flow. Results show that the anisotropic k-${\varepsilon}$ turbulence model has scarecely the fundamentally physical mechanism of predicting the swirling structure of flow.

  • PDF

Effect of Flare Angle in Counter-Rotating Swirler on Swirling Flow (동축 반전 스월러의 플레어 각도변화가 스월러 유동에 미치는 영향 연구)

  • Kim, Taek Hyun;Kim, Sung Don;Jin, Yu In;Min, Seong Ki
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.1
    • /
    • pp.31-37
    • /
    • 2016
  • Swirler generates the overall swirling flow in the combustion chamber and this swirling flow governs the flame stability and enhances fuel atomization. This paper deals with the flare angle effects on flow streamlines, recirculation zone, Central Toroidal Recirculation Zone(CTRZ) and Corner Recirculation Zone(CRZ) in the model combustion chamber using counter-rotating swirler. 2D PIV system was employed to obtain the velocity components and test condition was obtained using Reynolds Analogy equivalent to air test. We observed transitional flow patterns of flare angle increased. The obtained results show that the flare angle controls the behavior of Recirculation zone, Central Toroidal Recirculation Zone and Corner Recirculation Zone.

A Study on the Characteristics of Combustion Products of Swirling Furnace (선회분류 연소로의 연소 생성물 특성에 관한 연구)

  • 심순용;노재성;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.113-122
    • /
    • 1994
  • This paper describes the effects of combustion parameters on the characteristics of combustion products in swirling flow furnace. The concentration of combustion products and temperature distribution of flow field in the furnace have been investigated by numerical method. The fuel was injected into the furnace and the swirling device was constructed with three kinds of vane swirler at inlet port of furnace. The results of this study showed that the effect of combustion parameters on the concentration characteristics of carbon monoxide and nitrogen monoxide of combustion products. It was found that the pollutant formation wad dependent on the equivalence ratio and swirl intensity level.

  • PDF

Computational Investigation of Turbulent Swirling Flows in Gas Turbine Combustors

  • Benim, A.C.;Escudier, M.P.;Stopford, P.J.;Buchanan, E.;Syed, K.J.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • In the first part of the paper, Computational Fluid Dynamics analysis of the combusting flow within a high-swirl lean premixed gas turbine combustor and over the $1^{st}$ row nozzle guide vanes is presented. In this analysis, the focus of the investigation is the fluid dynamics at the combustor/turbine interface and its impact on the turbine. The predictions show the existence of a highly-rotating vortex core in the combustor, which is in strong interaction with the turbine nozzle guide vanes. This has been observed to be in agreement with the temperature indicated by thermal paint observations. The results suggest that swirling flow vortex core transition phenomena play a very important role in gas turbine combustors with modern lean-premixed dry low emissions technology. As the predictability of vortex core transition phenomena has not yet been investigated sufficiently, a fundamental validation study has been initiated, with the aim of validating the predictive capability of currently-available modelling procedures for turbulent swirling flows near the sub/supercritical vortex core transition. In the second part of the paper, results are presented which analyse such transitional turbulent swirling flows in two different laboratory water test rigs. It has been observed that turbulent swirling flows of interest are dominated by low-frequency transient motion of coherent structures, which cannot be adequately simulated within the framework of steady-state RANS turbulence modelling approaches. It has been found that useful results can be obtained only by modelling strategies which resolve the three-dimensional, transient motion of coherent structures, and do not assume a scalar turbulent viscosity at all scales. These models include RSM based URANS procedures as well as LES and DES approaches.

Investigation on the Turbulent Swirling Flow Field within the Combustion Chamber of a Gun-Type Gas Burner (Gun식 가스버너의 연소실내 난류 선회유동장 고찰)

  • Kim, Jang-Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.666-673
    • /
    • 2009
  • The turbulent swirling flow field characteristics of a gun-type gas burner with a combustion chamber were investigated under the cold flow condition. The velocities and turbulent quantities were measured by hot-wire anemometer system with an X-type probe. The turbulent swirling flow field in the edge of a jet seems to cause a recirculation flow from downstream to upstream due to the unbalance of static pressure between a main jet flow and a chamber wall. Moreover, because the recirculation flow seems to expand the main jet flow to the radial and to shorten it to the axial, the turbulent swirling flow field with a chamber increases a radial momentum but decreases an axial as compared with the case without a chamber from the range of about X/R=1.5. As a result, these phenomena can be seen through all mean velocities, turbulent kinetic energy and turbulent shear stresses. All physical quantities obtained around the slits, however, show the similar magnitude and profiles as the case without a chamber within the range of about X/R=1.0.

An Experimental Study on Swirl Fluctuation Velocity in a Horizontal Circular Tube (수평원통관에서 선회유동의 난동속도에 관한 실험적 연구)

  • Chang Tae-Hyun;Kim Hee-Young
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.2
    • /
    • pp.29-37
    • /
    • 2003
  • During the past five decades or so, the characteristics of turbulent swirling flow have been studied extensively because of its great technological and scientific importance. It is well known that the swirling flow improves heat transfer in duct flow. The reason for this is due to the effect of streamline curvature associated with the tangential velocity component. Although many studies have been carried out to investigate the characteristics of the swirling flow in a circular tube. The experimental methods for measuring the velocity components are by hot-wire or LDV (Laser-Doppler-Velocimetry) measuring single point velocity so far. The present study was aimed to analyse the flow characteristics of swirling flow such as time-mean velocity vector, local velocity turbulence intensity and turbulence kinetic energy by using PIV(Particle-Image Velocimetry). The experiment was carried out for four Reynold numbers $1.0\times10^{4}$, $1.5\times10^{4}$, $2.0\times10^{4}$ and $2.5\times10^{4}$ of the measuring area.

  • PDF

Evaluation of Turbulent Models on the Swirling Flow of a Gun-Type Gas Burner According to the Mesh Size (격자크기에 따른 Gun식 가스버너의 스월유동에 대한 난류모델평가)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.59-65
    • /
    • 2014
  • The computational fluid dynamics was carried out to evaluate turbulent models on the swirling flow of a gun-type gas burner(GTGB) according to the mesh size. The commercial SC/Tetra software was used for a steady-state, incompressible and three-dimensional numerical analysis. In consequence, the velocity magnitude from the exit of a GTGB and the flowrate predicted by the turbulent models of MP k-${\varepsilon}$, Realizable k-${\varepsilon}$ and RNG k-${\varepsilon}$ agree with the results measured by an experiment very well. Moreover, the turbulent kinetic energy predicted by the turbulent model of standard k-${\varepsilon}$ with mesh type C only agrees with the experimental result very well along the radial distance. On the other hand, the detailed prediction of the information of swirling flow field near the exit of a GTGB at least needs a CFD analysis using a fairly large-sized mesh such as a mesh type C.

Experimental Study on Heat Transfer with Swirling Flow in a Cylindrical Annuli (원형동심관내 선회유동의 열전달에 대한 실험적 연구)

  • Chang, Tae-Hyun;Kil, Sang-Cheol;Lee, Kwon-Soo
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.1
    • /
    • pp.53-60
    • /
    • 2010
  • Experimental investigations were conducted to study the characteristics of turbulent swirling flow in an axisymmetric annuli. Swirl angle measurements were performed using a flow visualization technique using smoke and dye liquid for Re=60,00080,000. Using the two-dimensional particle image velocimetry method, we found the time-mean velocity distribution and turbulent intensities in water with swirl for Re=20,000, 30,000, and 40,000 along longitudinal sections. Neutral points occurred for equal axial velocity at y/(R-r)=0.70.75, and the highest axial velocity was recorded near y/(R-r)=0.9. Negative axial velocity was observed near the convex tube along X/(D-d)=3~23. Another experimental study was performed to investigate heat transfer characteristics of turbulent swirling flow in an axisymmetric annuli. Static pressure, and local flow temperature were measured using tangential inlet condition and the friction factors and Nusselt number were calculated for several Reynolds numbers.