• Title/Summary/Keyword: swirl effect

Search Result 372, Processing Time 0.023 seconds

An experimental study on the characteristics of the swirl ratio distribution with an intake port geometry (흡기포트 형상에 따른 선회비 분포특성에 관한 실험적 연구)

  • Lee, Ji-Geun;Ju, Bong-Cheol;No, Byeong-Jun;Gang, Sin-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.725-734
    • /
    • 1997
  • The effect of helical intake port geometry on in-cylinder swirl flow characteristics was studied. Two helical intake ports were selected to change swirl ratio, mean flow coefficient with the variation of valve lifts, valve eccentricity ratios and axial distance. The measurements were made by using an impulse swirl meter. The port B modified to increase the swirl ratio( $R_{s}$) had the tendency of the increased non-dimensional rig swirl ( $N_{r}$) distribution in comparison with that of the port A. And the $N_{r}$ distribution was remarkably improved at low valve lifts. The modification of the geometry to increase the swirl ratio ( $R_{s}$) in helical intake port resulted in the decrease of the mean flow coefficient ( $C_{f(mean)}$) regardless of valve eccentricity ratio ( $N_{y}$). And also non-dimensional rig swirl ( $N_{r}$) in the high valve lift affected the calculation of swirl ratio considerably.onsiderably.

Numerical Study on the Effects of Velocity Profile Distortion and Swirl on Pressure Difference of Orifice Flowmeter Due to Pipe structure (배관구조에 따른 속도분포 변형과 선회가 오리피스 유량계의 압력차에 미치는 영향에 대한 수치적 연구)

  • Kim, Hong-Min;Kim, Kwang-Yong;Her, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1450-1456
    • /
    • 2003
  • Three-dimensional pipe flows with elbows, tees and headers in three different pipe systems are calculated to estimate the effect of asymmetry of axial velocity profile and swirl on measuring accuracy of an orifice flowmeter. It is evaluated how the pressure difference across the orifice is dependent on the upstream straight pipe length and how swirl intensity, swirl angle, and axial velocity distribution affect the measuring error of the orifice flowmeter. From the results, it is found that variation of the pressure difference across the orifice is negligible in case that maximum swirl angle is less than 2$^{\circ}$, and also that the pressure difference across the orifice is more sensitive to the asymmetry of axial velocity profile rather than the swirl intensity.

In-Cylinder Flow Characteristics of a Lean Burn Engine under Steady Conditions for Different Port Shapes (포트형상에 따른 정상상태 조건하에서의 희박엔진 연소실내의 유동특성)

  • 박상봉;이은현;유정열;이준식;최해천
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.26-33
    • /
    • 1998
  • An experimental study has been conducted for the three-dimensional in-cylinder swirl flow under steady conditions. Velocity fields are measured by using an LDV at various valve lifts. Effects of geometry of inlet ports on swirl flows are investigated for standard and helical ports. Swirl distributions evaluated from velocity measurements are compared with those obtained from an impulse torque swirl meter. Results show that the helical port generates more intensive swirl than the standard one but it causes red- uction in air flow coefficient. At the lower valve lift, no significant difference is observ- ed in non-dimensional swirl values between two ports because of limited pre-swirl effect, while it becomes significant as the valve lift increases.

  • PDF

A Study on the Flow Characteristics of Circular and Swirl Jets (원형 및 스월제트의 유동특성에 관한 연구)

  • Ko, Dong Guk;Yoon, Suck Ju
    • Journal of ILASS-Korea
    • /
    • v.19 no.2
    • /
    • pp.69-74
    • /
    • 2014
  • The comparison of the flow characteristics between circular and swirl jets which were controlled by the spinner attachment inside the airtube were conducted in this study. Swirl jet means a flow in whirls by mixing the flow of axial and tangential direction. Swirl flow has been used for the improvement of the combustion efficiency in the combustor. This flow is controlled by the spinner which has several vanes inclined by certain angles to the axial direction. In this study, angle of vane $30^{\circ}$ and diameter ratio of outlet to inlet of the airtube 0.73 were made. These spec. should find on the general gun type burner built in the domestic small size boiler. As the flow characteristics, axial and tangential velocities were measured by using the 2-D hot-wire velocimeter system and analyzed statistically. And also this research conducted a practical experiment considering to the attached belongings likes as ignitor, nozzle etc. on the airtube of the gun type burner. As a result, swirl occurred at the occasion of beingness and flow region extended considerably toward the radial direction. But effect of swirl did not transmit to the downstream. And the complicated flow was appeared regardless of the existence of spinner because of the effect of belongings.

Effect of the Swirl Number of Spinner on the Exhaust Air of the Gun Type Burner (건타입 버너의 토출공기에 대한 선회기의 스월 수 영향)

  • Ko, Dong Guk;Yoon, Suck Ju
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.70-75
    • /
    • 2015
  • Swirl flow in the gun type burner has an impact on the stabilization of the flame, improvement of the combustion efficiency. The swirl flow is created by the spinner which is inside the airtube that guide the combustion air. Gun type burner has generally the inner devices composed electronic spark plug, injection nozzle, combustion device adaptor, and spinner. These inner components change the air flow behavior passing through airtube. So, this study conducted the measurement using by hot-wire anemometer and analyzed effect of the swirl number of spinner on the exhaust air of gun type burner. Turbulence characteristics come up in this study was mean velocity, turbulence intensity, kinetic energy, shear stress and flattness factor of the air flow with the change of the distance of axial direction and tangential direction from the exit of the airtube.

Effect of Dynamic SGS Model in a Kerosene-LOx Swirl Injector under Supercritical Condition

  • Heo, Jun-Young;Hong, Ji-Seok;Sung, Hong-Gye
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.254-263
    • /
    • 2015
  • In this study, numerical simulations are carried out to investigate the dynamic SGS model effects in a Kerosene-LOx coaxial swirl injector under high pressure conditions. The turbulent model is based on large-eddy simulation (LES) with real-fluid transport and thermodynamics. To assess the effect of the dynamic subgrid-scale (SGS) model, the dynamic SGS model is compared with that of the algebraic SGS model. In a swirl injector under supercritical pressure, the characteristics of temporal pressure fluctuation and power spectral density (PSD) present comparable discrepancies dependant on the SGS models, which affect the mixing characteristics. Mixing efficiency and the probability density (PDF) function are conducted for a statistical description of the turbulent flow fields according to the SGS models. The back-scattering of turbulent kinetic energy is estimated in terms of the film thickness of the swirl injector.

A study on the influence of turbulence characteristics on flame propagation in swirl flow field (스월유동장의 화염전파에 미치는 난류특성의 영향에 관한 연구)

  • Lee, Sang-Jun;Lee, Jong-Tae;Lee, Seong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3282-3292
    • /
    • 1996
  • Flow velocity was measured using a hot wire anemometer. Turbulence intensity was in proportion to mean flow velocity regardless of swirl velocity. And integral length scale has proportional relation with swirl velocity regardless of measurement position. Flame speed calculated by radius of visualized flame was increased and then decreased according to lapse of time from spark. Maximum flame speed was increased according to increase of turbulence intensity. Burning speed and flame transport effect increased with increase of swirl velocity, but ratio of burning speed to flame speed decreased with increased of swirl velocity. Mass fraction burned versus volume fraction burned was increased in proportion to the increase of turbulence intensity, caused by increase of combustion promotion effect according to increase of turbulence intensity and scale.

Three-Dimensional Flow Analysis for Estimation of Measuring Error oi Orifice Flowmeter due to Swirling Flow (선회로 인한 오리피스 유량계의 계량오차 예측을 위한 삼차원 유동해석)

  • Kim Hong-Min;Kim Kwang-Yong;Her Jae-Young;Ha Young-Chul
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.79-82
    • /
    • 2002
  • Three-dimensional pipe flows with elbows and tees for few different pipe fittings are calculated to estimate the effect of swirling flow on measuring accuracy of orifice flow meter. It is evaluated how the pressure difference across the orifice is dependent on the length of upstream straight pipe in a branch and how swirl intensity, swirl angel and axial velocity distribution affect the measuring error of orifice flowmeter. From the results, it is found that, regardless of flow rate specified in this calculation, the effect of the straight pipe length can be neglected for the lengths larger than thirty diameters although there still remain significant swirl at the orifice

  • PDF

Swirl Effect on the Flame Propagation at Idle in a Spark Ignition Engine

  • Joo, Shin-Hyuk;Chun, Kwang-Min;Younggy Shin
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.12
    • /
    • pp.1412-1420
    • /
    • 2000
  • The objectives of the study are to investigate the effect of swirl on the flame propagation and to propose a flame propagation model that predicts the behavior of the flame front in the presence of significant swirl flow field by analyzing flame images pictured with a high speed digital video at idle. The velocity distribution of the charge in the cylinder was measured using an LDV measurement system. From the experimental results and analyses, a new flame propagation model is proposed in which flame frontal locations can be traced by superposing the convective flow field and the uniform expansion speed of the burned gas, and the proposed model reveals that the increase of the flame propagation speed on the presence of swirl motion within 1 ms after ignition is mainly due to the flame stretch, and mainly due to increased turbulence intensity later than 1 ms after ignition.

  • PDF

The Effect of Viscosity on the Spray Characteristics of Pressure Swirl Atomizer (스월분무특성에 미치는 점성의 영향)

  • Yoon, S.J.;Cho, D.J.
    • Journal of ILASS-Korea
    • /
    • v.4 no.4
    • /
    • pp.24-29
    • /
    • 1999
  • In the pressure swirl atomizer, the liquid is injected through tangential passages into a swirl chamber, from which it emerges with both tangential and axial velocity components to form a thin conical sheet at the nozzle exit. This sheet rapidly attenuates, finally disintegrating into ligaments and then drops. The purpose of this study is to measure the spray characteristics according to variation of viscosity of the spray produced by the pressure swirl atomizer. The nozzle tested here were especially designed for this investigation. The discharge coefficient is determined by measuring the volume flow rate with a flow meter and the cone angle of the liquid sheets issuing from the nozzle is obtained from series of photographs of the sheet for various liquid viscosity and injection pressure. And mean drop size is measured by image processing method. It is found that the geometrical characteristics of the nozzle and the variation of viscosity were the influential parameters to determine the spray characteristics such as the cone angle, discharge coefficients and SMD.

  • PDF