• 제목/요약/키워드: swirl angle

검색결과 262건 처리시간 0.026초

스월 인젝터 내 압축성 유동 해석 (ANALYSIS ON COMPRESSIBLE FLOW WITHIN A SWIRL INJECTOR)

  • 서용권;강상모;허형석
    • 한국전산유체공학회지
    • /
    • 제11권2호
    • /
    • pp.40-48
    • /
    • 2006
  • In the present, The theoretical and numerical results of gas flow characteristics inside a swirl injector are presented. For this purpose a one-dimensional (theoretical) model and 2D/3D CFD models are proposed for use in the design of the injector. It was found that contradictory to the classical theory about the compressible flow, the swirl has a significant effect on the mass flow rate and the choking conditions. It was found that the one-dimensional model provides reasonably accurate results compared with the 2D/3D numerical results, and thus can be used at the initial stage of the swirl-injector design process.

전류고정날개 설계에 대한 연구 (Study on the Design of Pre-Swirl Stator Vanes)

  • 최정은;서흥원;정석호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.177-180
    • /
    • 2002
  • The study on the design of pre-swirl stator vanes is performed. The pre-swirl stator vanes is an energy-saving device to improve propulsive performance by providing pre-swirl to the propeller inflow. The theoretical background and the design conditions for pre-swirl stator vanes are presented. The flow characteristics around the pre-swirl stator vanes attached ship hull are analyzed through the experimental method. The technique to determine the optimum location, angle and the number of stator vane is investigated and applied it to 310,000 TBW VLCC The flow velocities are measured using 5-hole Pilot tubes at the condition with and without a propeller.

  • PDF

분사기 내 압축성 스월 유동에 대한 연구 (Study on Compressible Swirl Flow within an Injector)

  • 서용권;강상모;허형석
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.207-212
    • /
    • 2005
  • In this paper, we present the theoretical and numerical results of flow characteristics of a gas in a swirl injector. Proposed in this study are one-dimensional (theoretical) model and 2D/3D CFD models for use in the design of the injector. It was found that contrary to the classical theory about the compressible flow, the swirl gives a significant effect on the mass flow rate and the choking conditions. The one-dimensional model was found to Provide reasonably accurate results compared with the 2D/3D numerical results, so that it can be employed in th initial stage of the swirl-injector design process.

  • PDF

2단 분류층 석탄가스화기 내의 열유동 및 미분탄/재 입자거동 계산 (Numerical Calculations on Flow and Behavior of Pulverized Coal and Ash Particles in 2-Stage Entrained-Flow Gasifier)

  • 황정호;박선호;정진도
    • 대한기계학회논문집B
    • /
    • 제25권7호
    • /
    • pp.895-904
    • /
    • 2001
  • Flow fields, temperature distributions, and particle trajectories in a 2-stage entrained-flow gasifier are calculated using a CFD code, FLUENT. Realizable k-$\xi$ model is used as a turbulent model. Because of swirling flow there appear recirculation regions near the burners. The characteristics of flow fields and temperature distributions in the gasifier are dependent on the swirl number of the system. Mean residence time of the particles in the reductor is inversely proportional to particle size, particle density and swirl number. As the swirl number is increasing, the particles injected from the combustor burners approach the wall near the combustor burners, which prevents the particles from entering the reductor and thus attatching the reductor wall. If the lower combustor burner angle is larger than the higher combustor burner angle for a given swirl number, the particles may move toward the reductor and cause ash/slag deposition problem.

저 NOx2단 선회 분무식 노즐 개발 및 실기적용 연구 (A Study for Development and Application of a Low NOx 2-staged Swirl Atomizer)

  • 송시홍;김혁필;안상택;이익형
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1793-1801
    • /
    • 2001
  • A study of low NOx atomizer was carried out to reduce nitrogen oxides(NOx) in a liquid fuel burner flame. The basic concept of NOx reduction in this atomizer is the fuel 2-staging combustion which is generated by a single atomizer forming two different stoichiometric flames. Two orifices swirl atomizer was selected and modified to realize this concept, and it was tested to obtain the design process of low NOx atomizer. These experiments were achieved to find out the relationship between the injection pressures and the flow rate, spray angle and drop size of swirl atomizer as well as to confirm the NOx reduction concept in real plant(power boiler). In comparison between experimental and theoretical results, the correct discharge coefficient and spray angle were obtained. In real burning test, NOx reduction rate was reached to above 27% of the case using conventional swirl atomizer.

Experimental study on the spray characteristics of a dual-manifold liquid-centered swirl coaxial injector

  • Lee, Ingyu;Yoon, Jungsoo;Park, Gujeong;Yoon, Youngbin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권4호
    • /
    • pp.444-453
    • /
    • 2014
  • A throttleable rocket engine enables operational possibilities such as the docking of spacecraft, maneuvering in a certain orbit and landing on a planet's surface, altitude control, and entrance to atmosphere-less planets. Thus, throttling methods have long been researched. However, dual-manifold injectors, which represent one throttling method, have been investigated less than others. In this study, dual-manifold and single-manifold injectors were compared to determine the characteristics of dual-manifold injectors. Also, the effects of gas injection were investigated with various F/O ratios. To investigate the characteristics, mass flow rate, spray pattern, spray angle, and droplet size were measured. The spray angle and droplet size were captured by indirect photography. About 30 images were taken to assess the spray patterns and spray angle. Also, 700 images were analyzed to understand the droplet distribution and targeting area, moving to the right from the centerline with 1.11-cm intervals. The droplet size was obtained from an image processing procedure. From the results, the spray angle showed two transition regions, due to swirl momentum in the swirl chamber regardless of the F/O ratio. The droplet size showed similar trends in both dual-manifold and single-manifold injectors except in the low mass flow rate region. In the case of the dual- manifold injector, the spray cone was not fully developed in the low mass flow rate region due to low angular momentum in the swirl chamber.

이중 스월 인젝터의 분무특성에 관한 연구 (Investigation for Spray Characteristics of Dual Swirl Injector)

  • 박희호;정충연;김유
    • 한국추진공학회지
    • /
    • 제9권1호
    • /
    • pp.17-26
    • /
    • 2005
  • 본 연구에서는 이중 스월 동축형 분사기의 운용조건인 산화제 및 연료 적용 압력, Recess에 의한 영향이 추진제의 분산각, 인젝터 출구에서의 속도성분, 오리피스에서의 액막 두께 등의 영향을 확인하여 설계에 반영할 수 있도록 비연소 시험과 아울러 분사기에서의 유동조건과 관련한 수치해석을 수행하였다. 추진제의 분산각은 적용한 압력 강하량에는 크게 변화하지 않으나 입구에서의 접선방향 속도성분비와 인젝터 형상계수에는 민감하게 반응하여 변하는 것을 알 수 있었다. 수치해석을 통한 인젝터 오리피스 내부 액막 두께 해석 및 연소실 내부 분산각 거동 해석의 타당성을 확인하였으며, 액막 두께변화에 속도성분비가 압력 강하량 변화에 비해 상대적으로 큰 영향을 미치는 것을 알 수 있었고, 속도 성분비율이 증가할수록 액막 두께가 감소하는 경향을 보였다.

헬리컬 노즐의 피치각에 따른 볼텍스 튜브의 성능특성에 관한 연구 (A Numerical Study on the Effect of Pitch Angle of Helical Nozzle on the Vortex Tube Performance Characteristics)

  • 오영택;김귀순
    • 한국유체기계학회 논문집
    • /
    • 제19권1호
    • /
    • pp.11-17
    • /
    • 2016
  • In this paper, a numerical analysis was performed to investigate the effect of the pitch angle of a helical nozzle on the performance characteristics of a vortex tube. Three-dimensional numerical simulation has been performed with standard $k-{\varepsilon}$ turbulence model by using FLUENT 13.0. The effect of the pitch angle of helical nozzle was described in term of ${\beta}$. A CFD analysis was performed on ${\beta}=0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $15^{\circ}$. In order to realize the influence of ${\beta}$ on performances of the vortex tube. Computation results were expressed by the ${\beta}-{\Delta}T_{h,c}$ graph and radial profiles of axial velocity and swirl velocity. The results showed that ${\beta}$ which improves energy separation capacity of vortex tube was $5^{\circ}$ at ${\alpha}=0.33$, 0.5 and $10^{\circ}$ at ${\alpha}=0.33$. Besides, It was confirmed that the results were closely related to axial velocity and swirl velocity.

정상유동 장치에서 유동 특성 평가 방법에 대한 연구(2) - ISM와 PIV 측정의 비교 (Study on Evaluation Method of Flow Characteristics in Steady Flow Bench(2) - Comparison of ISM and PIV Measurement)

  • 박찬준;엄인용
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.139-147
    • /
    • 2015
  • This paper is the second investigation on the evaluation methods of flow characteristics in a steady flow bench. In the previous work, several assumptions used in the steady flow bench were examined and it was concluded that the assumption of the solid rotation might cause serious problems. In this study, intake valve angle is selected as a main parameter for the assessment because the main flow direction to cylinder governed by this angle has the strongest influence on the in-cylinder flow pattern. For this purpose, four heads, which have the different angle, are prepared and the flow characteristics are estimated both by the conventional impulse swirl meter and a particle image velocimetry at 1.75 times bore position apart from the cylinder head, which is widely used plane in the steady flow measurement. The results show that both of the eccentricity and the velocity profile distort the flow characteristics when using the ISM at 1.75 plane, however, the effects of two factors act in the opposite direction. In addition, the profile's influence is much greater than that of the eccentricity.

유체의 관성력과 스월의 영향을 고려한 난류 하이브리드 베어링의 해석 (An Analysis for Turbulent Hybrid Bearings with Fluid Inertia and Swirl Injection Effects)

  • 이용복;김창호;최동훈
    • Tribology and Lubricants
    • /
    • 제12권3호
    • /
    • pp.85-91
    • /
    • 1996
  • An analysis for turbulent hybrid beatings with fluid inertia and swirl injection effect was derived for studying static characteristics of swirl-controlled hybrid journal. The swirl-controlled hybrid journal beating is considered to have more freedom in stability control in high speed rotating machinery. Current analysis is compared with experimental results with 3-recess hydrostatic journal bearing. The analysis revealed that the fluid momentum exchange at orifice discharge could produce pressure rise inside the recess region which can control the shear flow induced by journal rotation. The analysis also shows that the swirl-controlled hybrid journal beating has a capability of controlling load carrying capacity and stability by manipulating supply pressure and injection angle.