• Title/Summary/Keyword: swirl

Search Result 1,160, Processing Time 0.021 seconds

A Study on the Steady Flow Characteristics by PDA and Tumble Control Valve in Combustion Chamber (스월 및 연소실 형상에 의한 정상유동특성에 관한 연구)

  • Kim Dae-Yeol;Han Young-Chool;Park Bong-Kyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.74-82
    • /
    • 2006
  • This paper describes the steady flow characteristics due to PDA and tumble control valve in combustion chamber. We also investigated the flow inclination angle defined as the inverse tangent of non-dimensional rig tumble(NRT) devided by non-dimensional rig swirl(NRS) to find dominant flow direction. So we adapted two different types of PDA valve(port deactivation valve) to strengthen a swirl flow. The in-cylinder swirl flow different tendency between with/without PDA valve. It might be thought to be affected by swirl flow. We could find that tumble ratio and swirl ratio is different by PDA valve. The comparison are taked account of the swirl, the tumble ratio comparison in same mass flow rate. As a result, PDA valve is better than tumble control valve both in steady flow condition and swirl, tumble ratio. The data from present study are available for design of engine as the basic data.

Study of Combustion and Emission Characteristics for DI Diesel Engine with a Swirl-Chamber

  • Liu, Yu;Chung, S.S.
    • Journal of ILASS-Korea
    • /
    • v.15 no.3
    • /
    • pp.131-139
    • /
    • 2010
  • Gas motion within the engine cylinder is one of the major factors controlling the fuel-air mixing and combustion processes in diesel engines. In this paper, a special swirl-chamber is designed and applied to a DI (direct injection) diesel engine to generate a strong swirl motion thus enhancing gas motion. Compression, combustion and expansion strokes of this DI diesel engine with the swirl-chamber have been simulated by CFD software. The simulation model was first validated through comparisons with experimental data and then applied to do the simulation of the spray and combustion process. The velocity and temperature field inside the cylinder showed the influences of the strong swirl motion to spray and combustion process in detail. Cylinder pressure, average temperature, heat release rate, total amount of heat release, indicated thermal efficiency, indicated fuel consumption rate and emissions of this DI diesel engine with swirl-chamber have been compared with that of the DI diesel engine with $\omega$-chamber. The conclusions show that the engine with swirlchamber has the characteristics of fast mixture formulation and quick diffusive combustion; its soot emission is 3 times less than that of a $\omega$-chamber engine; its NO emission is 3 times more than that of $\omega$-chamber engine. The results show that the DI diesel engine with the swirl-chamber has the potential to reduce emissions.

Combustion Characteristics of Methane/Oxygen in Pre-Mixed Swirl Flame (메탄/순산소 예혼합 화염의 선회특성)

  • Kim, Han-Seok;Choi, Won-Seok;Cho, Ju-Hyeong;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.343-348
    • /
    • 2009
  • The present study has experimentally investigated the effects of $CO_2$ diluted oxygen on the structure of swirl-stabilized flame in a lab-scale combustor. The methane fuel and oxidant mixture gas ($CO_2$ and $O_2$) were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame characteristics were examined for various amount of carbon dioxide addition to the methane fuel and various swirl strengths. The effects of carbon dioxide addition and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using chemiluminescence techniques to provide information about flow field. The results show that the hot combustion zone increases at the upstream reaction zone because of an increase in the recirculation flow for an increase in swirl intensity. The hot combustion zone is also increased at the downstream zone by recirculation flow because of an increase in swirl intensity which results in higher centrifugal force. The OH and CH radical intensities of reaction zone decrease with carbon dioxide addition because the carbon dioxide plays a role of diluted gas in the reaction zone.

Effects of a Swirling and Recirculating Flow on the Combustion Characteristics in Non- Premixed Flat Flames

  • Jeong, Yong-Ki;Jeon, Chung-Hwan;Chang, Young-June
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.499-512
    • /
    • 2004
  • The effects of swirl intensity on non-reacting and reacting flow characteristics in a flat flame burner (FFB) with four types of swirlers were investigated. Experiments using the PIV method were conducted for several flow conditions with four swirl numbers of 0, 0.26, 0.6 and 1.24 in non-reacting flow. The results show that the strong swirling flow causes a recirculation, which has the toroidal structures, and spreads above the burner exit plane. Reacting flow characteristics such as temperature and the NO concentrations were also investigated in comparison with non-reacting flow characteristics. The mean flame temperature was measured as the function of radial distance, and the results show that the strong swirl intensity causes the mean temperature distributions to be uniform. However the mean temperature distributions at the swirl number of 0 show the typical distribution of long flames. NO concentration measurements show that the central toroidal recirculation zone caused by the strong swirl intensity results in much greater reduction in NO emissions, compared to the non-swirl condition. For classification into the flame structure interiorly, the turbulence Reynolds number and the Damkohler number have been examined at each condition. The interrelation between reacting and non-reacting flows shows that flame structures with swirl intensity belong to a wrinkled laminar-flame regime.

A Study on the Flow Characteristics and Engine Performance with Swirl Ratio Variance of Intake Port (흡기포트 선회비 변경에 따른 유동특성 및 엔진성능에 관한 연구)

  • Yoon, Jun-Kyu;Cha, Kyung-Ok
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.899-905
    • /
    • 2000
  • The characteristics of air flow and engine performance with swirl ratio variance of intake port In a turbocharged DI diesel engine was studied in this paper. The intake port flow is important factor which have influence on the engine performance and exhaust emission because the properties in the injected fuel depend on the combustion characteristics. The swirl ratio for ports was modified by hand-working and measured by impulse swirl meter. For the effects on performance and emission, the brake torque and brake specific fuel consumption were measured by engine dynamometer and NOx, smoke were measured by gas analyzer and smoke meter. As a result of steady flow test, when the valve eccentricity ratio are closed to cylinder wall, the flow coefficient and swirl intensity are increased. And as the swirl ratio is increased, the mean flow coefficient is decreasing, whereas the gulf factor is increasing. Also, through engine test its can be expected to meet performance and emission by optimizing the main parameters; the swirl ratio of intake port, injection timing and compression ratio.

  • PDF

The Static Pressure Distribution and Flow Characteristics Inside the High-Pressure Swirl Spray (고압 스월분무 내부의 압력분포 및 유동특성에 대한 연구)

  • Moon, Seok-Su;Abo-Serie, Essam;Choi, Jae-Joon;Bae, Choong-Sik
    • Journal of ILASS-Korea
    • /
    • v.11 no.3
    • /
    • pp.168-175
    • /
    • 2006
  • The static pressure distribution and flow characteristics inside the high-pressure swirl spray were investigated by measuring the static pressure inside the spray and applying the computational fluid dynamics (CFD). The static pressure difference between inner and outer part of spray was measured at different axial locations and operating conditions using a piezo-resislive pressure transducer. To obtain the qualitative value of swirl motion at different operating conditions, the spray impact-pressure at the nozzle exit was measured using a piezo-electric pressure transducer, and the flow angle was measured using a microscopic imaging system. The flow characteristics inside the high pressure swirl spray was simulated by the 1-phase 3-dimensional CFD model. The effect of pressure alternations on spray development was discussed with macroscopic spray images and a mathematical liquid film model. The results showed that the static pressure drop is observed inside the swirl spray as a result of the dragged air motion and the centrifugal force of the air. The recirculation vortex inside the spray was also observed inside the swirl spray as a result of the adverse pressure gradient along the axial locations. The results of analytical liquid film model and macroscopic spray images showed that the static pressure structure is one of the main parameters affecting the swirl spray development.

  • PDF

Study on the Effect of Swirl Flow on Spray Characteristics (스월유동이 분무특성에 미치는 영향에 관한 연구)

  • Choi, S.H.;Jeon, C.H.;Chang, Y.J.
    • Journal of ILASS-Korea
    • /
    • v.7 no.1
    • /
    • pp.14-20
    • /
    • 2002
  • It is well known that the flow and spray characteristics is critical factor on the performance and emission of a direct injection diesel engine. So this study aims to investigate the interaction of flow and spray characteristics. At first, in cylinder flow distributions in swirl adaptor for 4-valve cylinder head of DI Diesel engine were investigated under steady conditions for different SCV angles mounted on the cylinder head with steady rig test and 2-D LDV. And the in-cylinder flow was quantified in terms of mean flow coefficient and swirl ratio/tumble ratio. It was found that the swirl ratio is controlled between 2.3 and 3.8. Then spray characteristics of the intermittent injection were investigated. PDA system was utilized for measurement of a droplet size and velocity. The analyses of the PDA results are carried out with Time Dividing Method. It was found that there is a correlation between the swirl flow and SMD. The droplet size and the velocity were nearly constant value with each SCV angle. And the swirl ratio is higher, SMD smaller. The swirl ratio was helpful factor to the atomization of droplet.

  • PDF

Vibration Characteristics of High Pressure Multi-Stage Pump with Anti-Swirl Injection Balance Sleeve (역스월 유로 입력을 가지는 밸런스 슬리브를 적용한 고압 다단 펌프의 진동 특성)

  • 곽현덕;이용복;김창호;이봉주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.214-219
    • /
    • 2002
  • As the tangential flow inside the clearance of tribe elements such as bearings and seals is increased as the shaft speed increases, the system stability will be decreased due to the increment of the instability parameter. To reduce the tangential flow inside the clearance of the balance sleeve, anti-swirl injection mechanism is applied. The balance sleeve is used in resisting the axial force induced by impeller in high pressure multi-stage pump. In this paper, total three cases are experimentally investigated; original balance steeve, anti-swirl injection balance steeve with 0 axial degree and anti-swirl injection balance sleeve with 30 axial degree. Experiments are focused in the comparison of vibration level and leakage flow rate. The results clearly shows that the anti-swirl injection balance sleeve with 0 axial degree improves the vibration characteristics. However, the anti-swirl injection balance sleeve with 30 degree aggravates the vibration characteristics. In the standpoint of leakage performance, both anti-swirl injection balance sleeves show the better result than the original balance sleeve.

  • PDF

Effect of Solid Body rotating Swirl on Spray Structure (강체선회 유동이 분무 구조에 미치는 영향)

  • 이충훈;최규훈;노석홍;정석호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.137-146
    • /
    • 1997
  • Spray characteristics of high pressure injectors for diesel engines have been experimentally studied with special emphasis on the effect of swirl. A constant volume chamber was rotated in order to generate a continuous swirl having the flow field of a solid body rotation, resulting in the linear dependance of the swirl number on the rotating speed of the chamber. Emulsified fuel is injected into the chamber and the developing process of fuel sprays is visualized. The fuel spray developing process in D.I. diesel engine was investigated by this liquid injection technique. The effect of swirl on the spray tip penetration is quantified through modelling. Results show that the spray tip penetration is qualitatively different for low and high pressure injections. For high pressure injection case, a good agreement is achieved between the experimental results and the modeling accounting the effect of swirl. For low pressure injection, a reasonable agreement is obtained. It is found that excessive swirl may cause adverse effect on spray dispersion during the initial combustion period since the spray can not be impinged on chamber wall.

  • PDF

Effect of Inlet Valve Angle on In-Cylinder Swirl Generation Characteristics(I) (흡입밸브 각이 실린더 내 와류 발생 특성에 미치는 영향(I))

  • Ohm, In-Yong;Park, Chan-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.148-156
    • /
    • 2008
  • This paper is the first of 2 companion papers which investigate in-cylinder swirl generation characteristics according to inlet valve angle. Two DOHC 4 valve engines, one has wide intake valve angle and the other has narrow valve angle, were used to compare the characteristics of swirl motion generation in the cylinder. One intake port was deactivated to induce swirl flow. A PIV (Particle Image Velocimetry) was applied to measure in-cylinder velocity field according to inlet valve angle during intake stroke. The results show that the stronger swirl motion is observed in wide valve angle engine at the early intake stage; however, the swirl motion is gradually distorted by the intake flow component passing through valve area near the cylinder wall as the stroke proceeds. The tumble motion also does so in wide angle. On the contrary, the swirl and tumble motions, which are not clear at the initial stage, become better and better arranged as the piston goes down and up again after bottom dead center.