• Title/Summary/Keyword: swing motion

Search Result 330, Processing Time 0.03 seconds

The Methodology of the Golf Swing Similarity Measurement Using Deep Learning-Based 2D Pose Estimation

  • Jonghyuk, Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.39-47
    • /
    • 2023
  • In this paper, we propose a method to measure the similarity between golf swings in videos. As it is known that deep learning-based artificial intelligence technology is effective in the field of computer vision, attempts to utilize artificial intelligence in video-based sports data analysis are increasing. In this study, the joint coordinates of a person in a golf swing video were obtained using a deep learning-based pose estimation model, and based on this, the similarity of each swing segment was measured. For the evaluation of the proposed method, driver swing videos from the GolfDB dataset were used. As a result of measuring swing similarity by pairing swing videos of a total of 36 players, 26 players evaluated that their other swing sequence was the most similar, and the average ranking of similarity was confirmed to be about 5th. This ensured that the similarity could be measured in detail even when the motion was performed similarly.

The Kinematic Analysis of the Upper Extremity during Backhand Stroke in Squash (스쿼시 백핸드 드라이브 동작시 상지 분절의 운동학적 변인 분석)

  • An, Yong-Hwan;Ryu, Ji-Seon;Ryu, Ho-Young;Soo, Jae-Moo;Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.145-156
    • /
    • 2007
  • The purposes of this study were to investigate kinematic parameters of racket head and upper extremities during squash back hand stroke and to provide quantitative data to the players. Five Korean elite male players were used as subjects in this study. To find out the swing motion of the players, the land-markers were attached to the segments of upper limb and 3-D motion analysis was performed. Orientation angles were also computed for angular movement of each segment. The results were as follows. 1) the average time of the back hand swing (downswing + follow-through) was 0.39s (0.24 s + 0.15 s). 2) for each event, the average racket velocity at impact was 11.17m/s and the velocity at the end of swing was 8.03m/s, which was the fastest swing speed after impact. Also, for each phase, 5.10m/s was found in down swing but 7.68m/s was found in follow-through. Racket swing speed was fastest after the impact but the swing speed was reduced in the follow-through phase. 3) in records of average of joints angle, shoulder angle was defined as the relative angle to the body. 1.04rad was found at end of back swing, 1.75rad at impact and it changes to 2.35 rad at the end of swing. Elbow angle was defined as the relative angle of forearm to upper arm. 1.73rad was found at top of backswing, 2.79rad at impact, and the angle was changed to 2.55rad at end of swing. Wrist angle was defined as the relative angle of hand to forearm. 2.48rad was found at top of backswing, 2.86rad at impact, and the angle changes to 1.96rad at end of swing. As a result, if the ball is to fly in the fastest speed, the body has to move in the order of trunk, shoulder, elbow and wrist (from proximal segment to distal segment). Thus, the flexibility of the wrist can be very important factor to increase ball speed as the last action of strong impact. In conclusion, the movement in order of the shoulder, elbow and the wrist decided the racket head speed and the standard deviations were increased as the motion was transferred from proximal to the distal segment due to the personal difference of swing arc. In particular, the use of wrist (snap) may change the output dramatically. Therefore, it was concluded that the flexible wrist movement in squash was very important factor to determine the direction and spin of the ball.

Influence of Different Slope Analysis during Pitching Wedge Swing on Plantar Pressure Distribution Pattern (경사면에서 골프스윙 동작시 족저압력 분석)

  • Son, Dong-Ju;Yang, Jeong-Ok;Lee, Joong-Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.297-309
    • /
    • 2009
  • The study analyzed the mechanism of plantar foot pressure distribution during pitching wedge swinging on a flat, an up hill lie and a down hill lie to provide the fundamental information regarding biomechanical motion data by using plantar foot pressure measuring instrument. In the results, time factor spanning according to slope differences, plantar foot pressure factor and swing motion on the slope could have negative effect on the coiling of lower limbs during back swing, as well as the blocking of the lower limbs to minimize the dispersion of the weight and the release of the lower limbs after the impact during the down swing process. Moreover, since slope is one of many external factors affecting swing motion, address motion on an up hill lie limits the lower limbs movement, therefore, a relatively narrow stance is better on a down hill lie. It is estimated that a relatively wide stance would be better in order to limit the bigger activation of the lower limbs. Not only for the address motion but also during the down swing on an up hill lie it is concluded that the weight should be on the left foot in order to keep the body balance.

A New Approach to Anti-Sway System Design Problem

  • Kim, Young-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1306-1311
    • /
    • 2004
  • We suggest a new type of swing motion control system for a crane system in which a small auxiliary mass is installed on the spreader. The actuator reacting against the auxiliary mass applies inertial control forces to the spreader of the container crane to reduce the swing motion in the desired manner. In this paper, as the basic and first step, we apply the $H_{\infty}$ control approach to anti-sway control system design problem. And, it will be shown that the proposed control strategy is useful and it can be easily applicable to the real world. So, in this study, we investigate usefulness of the proposed anti-sway system and evaluate system performance through simulation and experimental studies.

Comparison Study of Various Control Schemes for the Anti-Swing Crane (무진동 크레인의 구현을 위한 여러가지 제어방식의 비교 연구)

  • 윤지섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2399-2411
    • /
    • 1995
  • Crane operation for transporting heavy loads inherently causes swinging motion at the loads due to crane's acceleration or deceleration. This motion not only lowers the handling safety but also slows down the handling process. To complement such a problem, Korea Atomic Energy Research Institute(KAERI) has designed several anti-swing controllers using open loop and closed loop approaches. They are namely a pre-programmed feedback controller and a fuzzy controller. These controllers are implemented on a 1-ton crane system at KAERI and their control performances are compared. Test operations show that the new controllers are superior to that of conventional cranes in terms of robustness to the disturbances and adaptation capability to the change of rope length.

Comparison of Kinematic Variables of the Club Head, Golf Ball and Body Alignment according to Swing Plane during Golf Driver Swing (골프 드라이버 스윙 시 스윙 플레인에 따른 클럽 헤드 및 골프볼의 운동학적 변인과 신체 정렬 변인의 비교 분석)

  • Young-Tae, Lim;Moon-Seok, Kwon;Jae-Woo, Lee
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.4
    • /
    • pp.147-152
    • /
    • 2022
  • Objective: The purpose of this study was to analyze the effects of club head and golf ball kinematics and body alignment according to the swing plane during golf driver swing. Method: Sixteen college golfers participated in this study. Kinematic data of the club head and golf ball were collected using golf swing analysis system (Trackman Ver. 3e). The body alignment variables were collected using 8 motion capture system. An Independent samples t-test was used for comparison between the Out-to-In group and In-to-Out group, and the statistical significance level was set at .05. Results: For the club head related variables, club path and club face angle showed higher values in Out-to-In swing plane than In-to-Out swing plane. For the kinematic variables of the golf ball, the total distance showed a higher value in the In-to-Out swing plane than that of the Out-to-In swing plane. For the body alignment, the In-to-Out swing plane showed higher values than the Out-to-In swing plane for the pelvis rotation angle and trunk rotation angle. Conclusion: This study suggest that it would be more effective to use the In-to-Out swing plane for increasing the total distance during the golf driver swing.

An Anti-Sway Control System Design Based on Simultaneous Optimization Design Approach (동시최적화 설계기법을 이용한 항만용 크레인의 흔들림 제어계 설계)

  • Kim, Young-Bok;Moon, Duk-Hong;Yang, Joo-Ho;Chae, Gyu-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.66-73
    • /
    • 2005
  • The sway motion control problem of a container hanging on the trolley is considered in this paper. In the container crane control problem, the main issue involves suppressing the residual swing motion of the container at the end of acceleration, during deceleration, or for an unexpected disturbance input. For this problem, in general, many trolley motion control strategies are introduced and applied. In this paper, we introduce and synthesize a swing motion control system, in which a small auxiliary mass is installed on the spreader. In this control system, the actuator reacting against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. In many studies, the controllers used to suppress the vibration have been synthesized for the given mathematical model of plants. In many cases, the designers have not been able to utilize the degree of freedom to adjust the structural parameters for the control object. To overcome this problem, so called "Structure/Control Simultaneous Method" is used. From this, in this paper the simultaneous design method is used to achieve optimal system performance. And the experimental result shows that the proposed control strategy is useful, to the case of that the controlled system is exposed to the uncertainties and, robust to disturbances like wind.

Kinematic analysis of professional golfers hip joint motion on the horizontal plane during driver swinging (골프 드라이브스윙 시 힙의 수평면상 움직임에 관한 운동학적 분석)

  • Park, Young-Hoon;Youm, Chang-Hong;Seo, Kook-Woong
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.97-104
    • /
    • 2005
  • Previous studies of kinematic analysis of golf swing usually dealt with variations vertically. The purpose of the study was to examine the horizontal hip joints motion of the fifteen male professional golfers during driver swinging. Kinematic variables were calculated by the Kwon3D motion analysis program. Paired t-tests and one-way ANOVA were used to compare the hip height, distance, displacement, and position differences. Results showed that there were no hip height changes and no hip height differences between left and right hip from address to impact. The axis of the backswing was braced right hip, the axis of the downswing was moving left hip. Hips position at the top of the backswing showed that hips move to target prior to hands, which means the sequential motion of the chain linked body segments. From address to impact, left hip moving distance was longer than right hip(p<.001), but during the whole swing, right hip moving distance was longer than left hip(p<.001). Hip rotation angle to target line was $-48.14{\pm}9.32^{\circ}$ at top of the backswing, $40.88{\pm}8.44^{\circ}$ at impact, and $104.70{\pm}8.14^{\circ}$ at finish.

Kinematical Analysis of El-grip swing with 1turn to el-grip in horizontal bar (철봉 어깨 틀어 휘돌아 다시 잡기(el-grip swing with one turn to el-grip) 동작의 운동학적 분석)

  • Kim, Jae-Phil
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.51-62
    • /
    • 2003
  • This study was attempted to kinematical characteristics of the El-grip swing with 1turn to el-grip in elite horizontal bar for the purpose of improving performance. The subjects were three males who were 2002 Busan Asian Games in men's team. The three dimensional motion analysis with DLT method was executed using three video cameras of analyzing the actual competition situation. In point of analyzing the actual competition situation, it is expected that gymnastics and coaches have the effective informations, and the following conclusion had resulted. 1. In case of release, It is impotant to make fast horizontal velocity of CM, high vertical position of CM, large hip and shoulder angle. Also It should be performed release motion of trunk rotation angle(+). 2. During LHR the action should be made at higher position than the CM and the shoulder joint is moving within $127{\pm}16.82$. It is important to make large lunk rotation angle. 3. During Hop, the RHR motion should be done in high position with short time and fast twisting action and to reduce the vertical speed is important.

Implementation of Golf Swing Analysis System Based on Swing Trajectories Analysis

  • Kim, Ho-Han;Kim, Sung-Young
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.2
    • /
    • pp.65-74
    • /
    • 2019
  • In this paper, we describe a new swing analysis system. We design this system to provide various information about golf swings and to help to correct wrong swings. We visualize three-dimensional skeletal information obtained from Kinect through various views. Golfers can see their swing behavior through these views. This system can calculate the similarity between the two trajectories obtained from Kinect to determine the similarity of swing trajectories of different golfers. Input trajectories are resampled to have equal spacing and are performed scaling and translation for accurate trajectory comparison. We have verified the usefulness of the proposed system through various analyzes.