• 제목/요약/키워드: swine waste

Search Result 102, Processing Time 0.025 seconds

Studies of Recycling Feedlot Wastes-Microbial and Chemical Changes in the Silage Fermentation of Swine Manure-Corn Meal Mixture-

  • Lee, Sung-Tae;Mheen, Tae-Ick;Kim, Hyun-Uk;Han, Moon-Hi
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1977.10a
    • /
    • pp.197.3-197
    • /
    • 1977
  • The microbial and chemical changes, and characterization of the predominant acid-producing bacteria in the swine manure ensilage blended with corn meal at a ratio of 50:50 were studied, The fermentation was dominated by Lactobacilli, which multiplied rapidly for the first 24 hrs. The acid production during the fermentation process caused rapid pH drop to 4.5, and controlled the population of E. coli and other organisms in the feedlot waste.(중략)

  • PDF

Deduction of Optimum Factors for Hydrogen Production from Organic Resources using a Continuous Reaction Process (연속반응공정을 이용한 유기성자원으로부터 수소생산을 위한 최적인자도출에 관한 연구)

  • Kim, Choong Gon;Shin, Hyun Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.2
    • /
    • pp.22-27
    • /
    • 2011
  • This study was performed to find out the optimum condition for hydrogen production by changing mixture ratio from 3:7(food waste water : swine wastewater) without pre-treatment of food wastewater and swine wastewater using a continuous reaction process. It was confirmed that hydrogen generation according to pH is the highest in a condition of pH 5.5, and that the optimum pH for hydrogen production in case of mixing food wastewater with swine wastewater is 5.5 through this. Hydrogen generation according to HRT showed high hydrogen generation rate in case of 4 days rather than 3 days, and this involves largely in vitality of hydrogen producing bacteria according to variation of the HRT value, so it is judged that HRT also acts as an important factor to hydrogen producing bacteria. The organic removal efficiency recorded a removal efficiency of maximum TS 52%, VS 71%, TSS 83% and VSS 89% at the 6th day of operation, and it was confirmed that organic removal efficiency is possible even through an hydrogen production process.

Study on Ammonia Emission Characteristic of Pig Slurry (양돈 슬러리의 암모니아 발생 특성에 관한 연구)

  • Lee S.H.;Yun N.K.;Lee K.W.;Lee I.B.;Kim T.I.;Chang J.T.
    • Journal of Animal Environmental Science
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • Ammonia emission from swine production process originates from three major sources: manure storage facility, swine housing, and land application of manure. Most of the ammonia gas that are emitted from swine production operations is the by-product of aerobic or anaerobic decomposition of swine waste by microorganism. Knowing the ammonia emission rate is necessary to understand how management practices or alternative manure handling process could reduce impacts of this emission on the environment and neighbors. Ammonia gas emission from pig slurry is very difficult to predict because it is affected by many factors including wind speed of slurry surface, temperature or pH of the swine slurry, sort breed differences and classes, and diets. This study was carried out to effects of pH and temperature on ammonia gas emission from growing-finishing pig slurry. Treated far slurry in this study were pH and temperature. Results showed that pH of slurry variable changes 5, 6, 7, 8 upon an addition of NaOH and $HNO_3$, respectively. The temperature of the slurry which was contained in a water bath maintained at increasing levels ranging from 10 to $35^{\circ}C$. Ammonia emission rate of influenced pH and temperature such that the increase in pH or temperature resulted to an increase in ammonia emission. The ammonia gas was not detected at pH 5 and 6. Moreover, at a slurry of pH 8, the ammonia ranged from 28 to 60ppm and 8-29 ppm at slurry pH of 7 while temperature was 13 to $33^{\circ}C$. When slurry pH was>6, the ammonia emission was significantly increased according to rise in temperature in contrast to acid treatment of the pH. There was also a significantly increase in ammonia emission relative to slurry pH of 7 to 8. The above findings showed that to effectively reduce ammonia emission from slurry of growing-finishing pigs, the pH and temperature should be maintained a low levels.

  • PDF

A Study on Establishment of Technical Guideline of the Installation and Operation for the Efficient Bio-gasification Facility of Pig Manure and Food Waste(II): - Results of the Precision Monitoring - (가축분뇨 병합처리 바이오가스화를 위한 설계 및 운전 기술지침 마련 연구(II) - 정밀모니터링 결과 중심으로 -)

  • Lee, Dongjin;Moon, HeeSung;Son, Jihwan;Bae, Jisu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.91-98
    • /
    • 2017
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to bio-gasification facilities treating organic wastes. 9 anaerobic digestion facilities which is normally operated during the field survey and 14 livestock manure farms were selected for precision investigation. the physicochemical analysis was performed on the moisture and organic contents, nutrients composition (carbohydrate, fat, protein), volatile fatty acids (VFAs), and nitrogen, etc. Volatile solids (VS) of organic wastes brought into the bio-gasification facilities were 2.81 % (animal manure only) and 5.92 % (animal manure+food waste), respectively. Total solids (TS) reults of samples from livestock farms were 5.6 % in piglets and 11~13 % in other kinds of breeding pigs. The actual methane yield based on nutrients contents was estimated to $0.36Sm^3CH_4/kgVS$ which is equivalent to 72 % of theoretical methane yield value. The optimum mixing ratio depending on the effect of the combined bio-gasification was obtained through the continuous stirred-tank reactor (CSTR) which is operated at different mixing ratio of swine manure and food waste leachate. The range of swine manure and food waste leachate from 60:40 to 40:60 were adequate to the appropriate conditions of anaerobic digestion; less than 100 gTS/, more than alkalinity of 1 gCaCO3/L, C/N ratio 12.0~30.0, etc.

Analysis of the Structure of the Bacterial Community in the Livestock Manure-based Composting Process

  • Sasaki, Hiraku;Nonaka, Jun;Otawa, Kenichi;Kitazume, Osamu;Asano, Ryoki;Sasaki, Takako;Nakai, Yutaka
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.1
    • /
    • pp.113-118
    • /
    • 2009
  • We investigated the structure of bacterial communities present in livestock manure-based composting processes and evaluated the bacterial succession during the composting processes. Compost samples were derived separately from swine manure, dairy manure and sewage sludge. The structure of the bacterial community was analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) using universal eubacterial primers. The genus Bacillus and related genera were mainly detected following the thermophilic composting phase of swine and dairy manure composts, and the members of the phylum Bacteroidetes were mainly detected in the cattle manure waste-based and sewage sludge compost. We recovered and sequenced limited number of the bands; however, the PCR-DGGE analysis showed that predominant diversities during the composting processes were markedly changed. Although PCR-DGGE analysis revealed the presence of different phyla in the early stages of composting, the members of the phylum Firmicutes and Bacteroidetes were observed to be one of the predominant phyla after the thermophilic phase.

Ultimate Anaerobic Biodegradability and Multiple Decay Rate Coefficients of Organic Wastes (유기성 폐자원의 최종생분해도 및 다중 분해속도 평가)

  • Kim, Sun-Woo;Kang, Ho;Jeong, Ji-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.7
    • /
    • pp.387-395
    • /
    • 2015
  • Anaerobic mesophilic batch test of several organic wastes were carried out by a graphical statistic analysis (GSA) to evaluate their ultimate biodegradability and two distinctive decay rates ($k_1$ and $k_2$) with their corresponding degradable substrate fractions ($S_1$ and $S_2$). Each 3 L batch reactor was operated for more than 100 days at the substrate to inoculum ratio (S/I) of 0.5 as an initial total volatile solids (TVS) mass basis. Their Ultimate biodegradabilities were obtained respectively as follow; 69% swine waste, 45% dairy cow manure, 66% slaughterhouse waste, 79% food waste, 87% food waste leachate, 68% primary sludge and 39% waste activated sludge. The readily biodegradable fraction of 89% ($S_1$) of Swine Waste BVS ($S_o$) degraded with in the initial 31 days with $k_1$ of $0.116day^{-1}$, where as the rest 11% slowly biodegradable fraction ($S_2$) of BVS degraded for more than 100 days with the long term batch reaction rates ($k_2$) of $0.004day^{-1}$. For the Food Waste and Waste Activated Sludge, their readily biodegradable portions ($S_1$) appeared 89% and 80%, which degrades with $k_1$ of $0.195day^{-1}$ and $0.054day^{-1}$ for an initial 15 days and 28 days, respectively. Their corresponding long term batch reaction rates ($k_2$) were $0.003day^{-1}$ and $0.002day^{-1}$. Results from other organic wastes are addressed in this paper. The theoretical hydraulic retention times (HRTs) of anaerobic digesters treating organic wastes are easily determined by the analysis of multiple decay rate coefficients ($k_1$ and $k_2$) and their corresponding biodegradable substrate fractions ($S_1$ and $S_2$).

A Study on Optimum Mixing Ratio of Paper Wastes as Bulking Agent in Cornposting of Swine Feces (돈분의 퇴비화에 있어서 종이류 폐기물의 적정 배합량에 관한 연구)

  • 정문식;박석환;최경호;손현석;김성균;박지영
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.4
    • /
    • pp.82-90
    • /
    • 1996
  • This study was performed to find the optimum mixing ratio of paper waste in composting of mixture of swine feces and newspaper. Using the experimental setting of aeration rate which was found in the experiment carried out priorly, and moisture contents reported in other literature, just the initial C:N ratios were differentiated by mixing different amount of newspaper with the same amount of swine feces. This study was carried out by operating 4 experimental cornposting reactors of bench scale for 3 weeks. The followings are the conclusions that were derived from this study. 1. During composting reaction, the C:N ratio of each cornposter was decreased. Degree of decrease was in order of run 3, run 2, run 4, and run 1 of which initial C:N ratio was 30, 25, 35, and 20 respectively. All of the final composts were found to be completed composting reaction. 2. Ash contents of each reactor increased rapidly in order of run 3, run 2, run 4, and run 1. The absolute values of quadratic effect coefficients of each second order regression function was 0.059, 0.038, 0.032, and 0.030 respectively. Ash contents evolution trend had a linear correlation with the C:N ratio trend. (r=-0.96932, p<0.05) 3. The range of highest temperatures reached during composting was 47.2-53.5$\circ$C. Those were not significantly different from one another. Thermophilic temperatures were maintained in the range of 48-108 hours. 4. Contents of heavy metal detected in the final compost were lower than those of Korean and European standards. 5. Concentration range of Nitrogen in the final compost was 1.11-2.27%, and that of phosphorus was 8.40-10.70 mg/kg. 6. The optimum C:N ratio which has been proposed without the consideration of types of bulking agents should be re-examined. Biodegradabilities of each bulking agents was thought to be important factor when determining the optimum initial C:N ratio for cornposting.

  • PDF

Treating Swine Wastewater by Anaerobic Bioreactors (혐기성 생물반응기에 의한 축산폐수의 처리)

  • Lee, Gook-Hee;Kim, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.1
    • /
    • pp.54-60
    • /
    • 1999
  • Three different types of lab-scale anaerobic bioreactors, AF and two-stage ASBF-PR and ASBF-SP, were evaluated in treating swine wastewater by operating at $1{\sim}2$ days of hydraulic retention time with increasing organic loading rate upto 6.3 $kg-COD/m^3{\cdot}d$ at $35^{\circ}C$. Seeding the anaerobic bioreactors with waste anaerobic digester sludge from a municipal wastewater treatment plant was effective and a 40-day acclimation period was required for steady-state operation. Three anaerobic bioreactors were effective in treating swine wastewater with COD removal efficiency of $66.4{\sim}84.9$% and biogas production rate of $0.333{\sim}0.796m^3/kg-COD_{removed}{\cdot}d$. Increases of organic loading rate by increasing influent COD concentration and/or decreasing hydraulic retention time caused decreases in COD removal efficiency and increases in biogas production rate. At relatively high organic loading rate employed in this study, the treatment efficiency of AF and ASBF-PR were similar but superior than that of ASBF-SP, indicating that porosity and pore size of the media packed in the bioreactors are more important factors contributing the performance of to bioreactors than specific surface area of the media. TKN in swine wastewater must be removed prior to the anaerobic processes when anaerobic process is considered as a major treatment process since influent TKN concentration of $1,540{\sim}1,870mg/L$ to the bioreactors adversely affect the activity of methanogenic bacteria, resulting in decreases of treatment efficiency and biogas production rate by 50%.

  • PDF

Effect of Feeding Extruded Food Waste and Animal Manure Mixture Diets on Laying Performance and Egg Quality in Laying Hen (남은 음식물과 가축분 혼합 Extrusion 사료의 대체급여가 산란계의 산란성적 및 난질에 미치는 영향)

  • Kim C. H.;Pak J. I.;Lee K. H.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.2
    • /
    • pp.89-96
    • /
    • 2005
  • This studies were conducted to investigated the feeding effects of extruded broiler manure(BMERF) mixture and swine manure(SFERF) mixture on laying performance and egg qualify of laying hens. As a experimental feed, broiler manure, corn and tapioca were mixed in 50, 30 and $20\%$ to use for treated extrusion feed(BMERF, Exp. 1) and food waste(FW), swine manure and com were also mixed in 40, 40 and $20\%$ to use it(SFERF, Exp. 2) and implemented during 12 weeks, four replication and 30 chick of each treatment. The nutritional ingredients(protein, energy and calcium contents) of food waste, broiler manure and swine manure had been significantly improved(p<0.05) when handling extrusion. In the Exp. 1, the feed intake was much higher BMERF $40\%$ and BMERF $20\%$ than control and BMERF $10\%(p<0.05)$, the egg production of control, BMERF $10\%$ and BMERF $20\%$ were not significantly difference(p>0.05), but BMERF $40\%$ was significantly lower(p<0.05). The feed efficiency of control and BMERF $10\%$ were not significantly difference(p>0.05), but BMERF $20\%$ and BMERF $40\%$ were significantly lower(p<0.05). York color, White height and Haugh unit did not affected by BMERF additive. In the Exp. 2, the feed intake of control, FW $20\%$, SFERF $10\%$ and SFERF $20\%$ were not significantly difference(p<0.05), but FW $40\%$ and SFERF $40\%$ were significantly higher(p<0.05). The egg production of SFERF $10\%$ and SFERF $20\%$ were not significantly difference(p>0.05) with control, but FW $20\%$, FW $40\%$ and SFERF $40\%$ were significantly lower(p<0.05). The feed efficiency was similar tendency to the egg production, however, the egg weight, york color, white height and haugh unit were not significantly difference among each treatments(p>0.05).

Study on Characteristics of Biogas Production and Liquid Fertilizer with Anaerobic Co digestion of Livestock Manure and Food Waste (혐기성소화에서 가축분뇨와 음식물쓰레기의 혼용에 따른 바이오가스 생산 및 소화액의 액비 특성 연구)

  • Park, Woo-Kyun;Park, Noh-Back;Shin, Joung-Du;Hong, Seung-Gil;Kwon, Soon-Ik;Kang, Kee-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.895-902
    • /
    • 2011
  • Objective of this research was to investigate the characteristics of biogas production in anaerobic digestion reactor with different mixing ratio of food waste and swine manure. It was observed that the highest removal efficiency of organic material was 80% at 60 : 40 of mixing ratio (livestock manure : food waste). And also biogas yield was varied due to different mixing ratio of them. The cumulative biogas yield was highest at 60 : 40 of mixing rate (livestock manure : food waste). For use of the liquefied fertilizer as effluent from anaerobic digester, it was the limited ratio for 30% of co-digested food waste based on its salt content.