• Title/Summary/Keyword: sway disturbance

Search Result 30, Processing Time 0.033 seconds

The Change of Postural Sway of Diabetic Neuropathy by Galvanic Vestibular Stimulation (평류전정자극에 의한 당뇨성 신경증 환자의 자세동요 변화)

  • Hwang, Tae-Yeun;Kim, Young-Nam;Kim, Tae-Youl;Park, Jang-Sung;Yoon, Se-Won
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.3 no.1
    • /
    • pp.71-84
    • /
    • 2005
  • This study had performed with purposes to analyze the influence of the change of vestibular sens, visual and proprioceptive sense to the postural sway, so as to supply the necessary clinical materials through developing the physical therapeutic interventions and assessment format for the diabetic neuropathy patients. The sample consisted of fifteen diabetic neuropathy patients with sensory disorder in their lower limbs and fifteen age-matched normal control group. Then the effect of the GVS and the visual cue open and closed to the postural sway were measured by CoP. The summary of the comparison results were obtained below. In the comparison of diabetes neuropathy patients group and age matched normal control group, however diabetes neuropathy patients group had a decrease in superficial tactile sense(p<.001) and nerve conduction velocity(p<.001), they were able to control the posture and walk. So it is, diabetes neuropaty patients had more disturbance compared with AMC group on at a hard surface, particularly in the visual cue open(p<.001) and visual cue closed(p<.01). Moreover, since diabetes neuropathy patients group had more differences in visual cue open and closed(p<. 01), GVS(p<.01), it meant that they're affected largely by vestibular sense, visual sense. In addition, since there're the largest change in doubled sense disturbance such as visual cue open and closed under GVS, it meant that compensation of other senses were quite important for the diabetes neuropathy patients' postural control. In the conclusion, diabetes neuropathy patients who decrease or lose the somatosensory system, sensory training of visual and vestibular system are likely to be quite essential to control the posture and balance.

  • PDF

An Automatic Travel Control of a Container Crane using Neural Network Predictive PID Control Technique (신경회로망 예측 PID 제어법을 이용한 컨테이너 크레인의 자동주행제어)

  • Suh Jin Ho;Lee Jin Woo;Lee Young Jin;Lee Kwon Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.61-72
    • /
    • 2005
  • In this paper, we develop anti-sway control in proposed techniques for an ATC system. The developed algorithm is to build the optimal path of container motion and to calculate an anti-collision path for collision avoidance in its movement to the finial coordinate. Moreover, in order to show the effectiveness in this research, we compared NNP PID controller to be tuning parameters of controller using NN with 2 DOF PID controller. The experimental results for an ATC simulator show that the proposed control scheme guarantees performances, trolley position, sway angle, and settling time in NNP PID controller than other controller. As a result, the application of NNP PID controller is analyzed to have robustness about disturbance which is wind of fixed pattern in the yard. Accordingly, the proposed algorithm in this study can be readily used for industrial applications

A Study on A Development of Automatic Travel Control System of Crane using Neural Network Predictive Two Degree of Freedom PID Controller (신경회로망 예측 2자유도 PID 제어기를 이용한 크레인의 자동주행 제어 시스템 개발에 관한 연구)

  • Sohn, Dong-Seop;Lee, Chang-Hoon;Lee, Jin-Woo;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2788-2790
    • /
    • 2002
  • In this paper, we designed neural network predictive two degree of freedom PID controller to control sway of crane Crane's trolley arrive minimum oscillation of transfer body and establishment position in minimum time. When various establishment location and surrounding disturbance were approved based on mathematical modeling of crane, controller designed to become effective control location error and oscillation angle of two control variables that simultaneously can predictive control. We wish to develop automatic travel control system through anti-sway skill of crane.

  • PDF

A correction of synthetic aperture sonar image using the redundant phase center technique and phase gradient autofocus (Redundant phase center 기법과 phase gradient autofocus를 이용한 합성개구소나 영상 보정)

  • Ryue, Jungsoo;Baik, Kyungmin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.546-554
    • /
    • 2021
  • In the signal processing of synthetic aperture sonar, it is subject that the platform in which the sensor array is installed moves along the straight line path. In practical operation in underwater, however, the sensor platform will have trajectory disturbances, diverting from the line path. It causes phase errors in measured signals and then produces deteriorated SAS images. In this study, in order to develop towed SAS, as tools to remove the phase errors associated with the trajectory disturbances of the towfish, motion compensation technique using Redundant Phase Center (RPC) and also Phase Gradient Autofocus (PGA) method is investigated. The performances of these two approaches are examined by means of a simulation for SAS system having a sway disturbance.

The Study on Position Control of Gantry Crane Spreader (갠트리 크레인 스프레더의 웨치제어에 관한 연구)

  • 이성섭;이형우;박찬훈;박경택;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.307-307
    • /
    • 2000
  • The swing motion of the spreader during and after movement causes an efficiency problem of position control in unmaned gantry crane. The objective of this research is to design implementable stabilizing controllers that minimize the swing motion of spreader in precise position control. The dynamic equations related to trolley, rope, and spreader are derived. For constitute a similar actual system, we introduced a conception of spring and damper in the connector. It is located between the trolley and link that is used in stead of rope. We derived dynamic equation by appliance that friction and external disturbance are occurred to the connector. We constituted of position servo system and velocity servo system for the control of position and velocity of the trolley and constituted of lag compensator system for the control of sway of the spreader. And we will show an effect of the proposed system in this research finally.

  • PDF

An Anti-Sway Control System Design Based on Simultaneous Optimization Design Approach (동시최적화 설계기법을 이용한 항만용 크레인의 흔들림 제어계 설계)

  • Kim, Young-Bok;Moon, Duk-Hong;Yang, Joo-Ho;Chae, Gyu-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.66-73
    • /
    • 2005
  • The sway motion control problem of a container hanging on the trolley is considered in this paper. In the container crane control problem, the main issue involves suppressing the residual swing motion of the container at the end of acceleration, during deceleration, or for an unexpected disturbance input. For this problem, in general, many trolley motion control strategies are introduced and applied. In this paper, we introduce and synthesize a swing motion control system, in which a small auxiliary mass is installed on the spreader. In this control system, the actuator reacting against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. In many studies, the controllers used to suppress the vibration have been synthesized for the given mathematical model of plants. In many cases, the designers have not been able to utilize the degree of freedom to adjust the structural parameters for the control object. To overcome this problem, so called "Structure/Control Simultaneous Method" is used. From this, in this paper the simultaneous design method is used to achieve optimal system performance. And the experimental result shows that the proposed control strategy is useful, to the case of that the controlled system is exposed to the uncertainties and, robust to disturbances like wind.

A Study on the Tracking Control of a Transfer Crane with Tire Slip (슬립을 고려한 트랜스퍼 크레인의 주행제어에 관한 연구)

  • Jeong, Ji-Hyun;Lee, Dong-Seok;Kim, Young-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1212-1219
    • /
    • 2010
  • The most important thing in the container terminal is to handle the cargo effectively in the limited time. To achieve this object, many strategies have been introduced and applied to. If we consider the technical trends and environment of the automated container terminal, it is necessary that the systems for cargo handling are equipped with more intelligent control technologies. To cope with this tendency, from the middle of the 1990's, the automated RMGC (Rail-Mounted Gantry Crane) and RTGC (Rubber-Tired Gantry Crane) have been developed and widely used to handle containers in the yards. Recently, in these cranes, the many equipments like CCD cameras and sensors are mounted to cope with the automated terminal environment. If we want to obtain more efficient handling performance, the modelling, tracking control, anti-sway system design, skew motion suppressing and complicated motion control problems must be considered in the control system design and application process. Considering these problems, in this paper, the system modelling with the tire slip and a tracking control approach are proposed. Especially, we design the tracking control system based on the 2DOF servosystem design approach to cope with undesirable disturbance input. The experiment results show the desirable performance and usefulness of the designed control system.

A Study of Postural Control Characteristics in Schoolchild with Intellectual Disability (초등학교 지적장애아동의 자세조절 특성)

  • Lee, Hyoung Soo
    • 재활복지
    • /
    • v.14 no.3
    • /
    • pp.225-256
    • /
    • 2010
  • This study aims to provide the basic data of the rehabilitation program for the schoolchild with intellectual disability by designing new framework of the features of postural control for the schoolchild with intellectual disability. For this, the study investigated what sensations the schoolchild are using to maintain posture by selectively or synthetically applying vision, vestibular sensation and somato-sensation, and how the coordinative sensory system of the schoolchild is responding to any sway referenced sensory stimulus. The study intended to prove the limitation of motor system in estimating the postural stability by providing the cognitive motor task, and provided the features of postural control of the schoolchild with intellectual disability by measuring the onset times and orders of muscle contraction of neuron-muscle when there is a postural control taking place due to the exterior disturbance. Furthermore, by comparatively analyzing the difference between the normal schoolchild and the intellectually disabled schoolchild, this study provided an optimal direction for treatment planning when the rehabilitation program is applied in the postural control ability training program for the schoolchild with intellectual disability. Taking gender and age into consideration, 52 schoolchild including 26 normal schoolchild and 26 intellectually disabled schoolchild were selected. To measure the features of postural control, CTSIB test, and postural control strategy test were conducted. The result of experiment is as followed. First, the schoolchild with intellectual disability showed different feature in using sensory system to control posture. The normal schoolchild tended to depend on somato-sensory or vision, and showed a stable postural control toward a sway referenced stimulus on somato-sensory system. The schoolchild with intellectual disability tended to use somato-sensory or vision, and showed a very instable postural control toward a sway referenced vision or a sway referenced stimulus on somato-sensory system. In sensory analysis, the schoolchild with intellectual disability showed lower level of proficiency in somato-sensation percentile, vision percentile and vestibular sensation percentile compare to the normal schoolchild. Second, as for the onset times and orders of muscle contraction for strategies of postural control when there is an exterior physical stimulus, the schoolchild with intellectual disability showed a relatively delayed onset time of muscle control, and it was specially greater when the perturbation is from backward. As for the onset orders of muscle contraction, it started from muscles near coax then moved to the muscles near ankle joint, and the numbers and kinds of muscles involved were greater than the normal schoolchild. The normal schoolchild showed a fast muscle contracting reaction from every direction after the perturbation stimulus, and the contraction started from the muscles near the ankle joint and expanded to the muscles near coax. From the results of the experiments, the special feature of the postural control of the schoolchild with intellectual disability is that they have a higher dependence on vision in sensory system, and there was no appropriate integration of swayed sensation observed in upper level of central nerve system. In the motor system, the onset time of muscle contraction for postural control was delayed, and it proceeded in reversed order of the normal schoolchild. Therefore, when use the clinical physical therapy to improve the postural control ability, various sensations should be provided and should train the schoolchild to efficiently use the provided sensations and use the sensory experience recorded in upper level of central nerve system to improve postural control ability. At the same time, a treatment program that can improve the processing ability of central nerve system through meaningful activities with organizing and planning adapting reaction should be provided. Also, a proprioceptive motor control training program that can induce faster muscle contraction reaction and more efficient onset orders from muscularskeletal system is need to be provided as well.

Effectiveness of Transcutaneous Electrical Nerve Stimulation(TENS) on the Changes of Postural Balance and Muscle Contraction following Muscle Fatigue (경피신경전기자극이 근피로에 의한 자세균형과 근수축력의 변화에 미치는 효과)

  • Cho, Hwi-Young;Lee, Sun-Hyun;In, Tae-Sung;Kang, Sun-Hee;Lee, Dong-Yeop;Song, Chang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4418-4426
    • /
    • 2010
  • Muscle fatigue often induces deterioration of postural balance and muscle contraction, such as strength or maximal voluntary contraction(MVC). This study was to investigate the effects of transcutaneous electrical stimulation(TENS) applied to the fatigued muscles on postural imbalance and decline in muscle strength following fatigue of triceps surae. For the 4 months from March, 2010, twenty healthy subjects without vestibular disease and visual disturbance were recruited and induced muscle fatigue of triceps surea performed by repeated voluntary contraction. TENS was applied to gastocnemius immediately after development of muscle fatigue. Postural sway length, velocity and MVC were recorded under these conditions: pre-fatigue, post-fatigue, and TENS application to fatigued muscle during post-fatigue. Muscle fatigue increased postural imbalance as expressed by sway length and velocity and decreased muscle contraction(p<.05), while TENS improved the postural imbalance and MVC following muscle fatigue during stance(p<.05). The results suggested that fatigue on plantar flexor is associated with postural balance and muscle contraction, and TENS application to fatigued muscle was effective in improving postural imbalance and decline in muscle strength following muscle fatigue. TENS will be an effective method in exercise, working environment and daily life.

Robust Path Tracking Control for Autonomous Underwater Vehicle with Variable Speed (변속 무인 수중 잠수정을 위한 강인 경로 추적 제어)

  • Choi, Yoon-Ho;Kim, Kyoung-Joo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.476-482
    • /
    • 2010
  • In this paper, we propose a robust path tracking control method for autonomous underwater vehicle with variable speed. The proposed path tracking controller consists of a kinematic controller and a dynamic controller. First, the kinematic controller computes the surge speed and yaw rate to follow the reference path with variable speed. Then the dynamic controller controls the thrust force and yaw torque to move the AUV actually. In the dynamic control, we assume that the sway speed is a disturbance. In addition the dynamic controller is designed based on sliding mode conrol. We also demonstrate the stability of the proposed control method by Lyapunov stability theory. Finally, simulation results illustrate the performance of the proposed control method.