• Title/Summary/Keyword: swarm system

Search Result 374, Processing Time 0.026 seconds

Optimal Surveillance Trajectory Planning for Illegal UAV Detection for Group UAV using Particle Swarm Optimization (불법드론 탐지를 위한 PSO 기반 군집드론 최적화 정찰궤적계획)

  • Lim, WonHo;Jeong, HyoungChan;Hu, Teng;Alamgir, Alamgir;Chang, KyungHi
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.382-392
    • /
    • 2020
  • The use of unmanned aerial vehicle (UAV) have been regarded as a promising technique in both military and civilian applications. Nevertheless, due to the lack of relevant and regulations and laws, the misuse of illegal drones poses a serious threat to social security. In this paper, aiming at deriving the three-dimension optimal surveillance trajectories for group monitoring drones, we develop a group trajectory planner based on the particle swarm optimization and updating mechanism. Together, to evaluate the trajectories generated by proposed trajectory planner, we propose a group-objectives fitness function in accordance with energy consumption, flight risk. The simulation results validate that the group trajectories generated by proposed trajectory planner can preferentially visit important areas while obtaining low energy consumption and minimum flying risk value in various practical situations.

Optimal sensor placement under uncertainties using a nondirective movement glowworm swarm optimization algorithm

  • Zhou, Guang-Dong;Yi, Ting-Hua;Zhang, Huan;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.243-262
    • /
    • 2015
  • Optimal sensor placement (OSP) is a critical issue in construction and implementation of a sophisticated structural health monitoring (SHM) system. The uncertainties in the identified structural parameters based on the measured data may dramatically reduce the reliability of the condition evaluation results. In this paper, the information entropy, which provides an uncertainty metric for the identified structural parameters, is adopted as the performance measure for a sensor configuration, and the OSP problem is formulated as the multi-objective optimization problem of extracting the Pareto optimal sensor configurations that simultaneously minimize the appropriately defined information entropy indices. The nondirective movement glowworm swarm optimization (NMGSO) algorithm (based on the basic glowworm swarm optimization (GSO) algorithm) is proposed for identifying the effective Pareto optimal sensor configurations. The one-dimensional binary coding system is introduced to code the glowworms instead of the real vector coding method. The Hamming distance is employed to describe the divergence of different glowworms. The luciferin level of the glowworm is defined as a function of the rank value (RV) and the crowding distance (CD), which are deduced by non-dominated sorting. In addition, nondirective movement is developed to relocate the glowworms. A numerical simulation of a long-span suspension bridge is performed to demonstrate the effectiveness of the NMGSO algorithm. The results indicate that the NMGSO algorithm is capable of capturing the Pareto optimal sensor configurations with high accuracy and efficiency.

Multi-UAV Formation Algorithm Based on Distributed Control Using Swarm Intelligence (군집 지능을 이용한 분산 제어 기반 대형 형성 알고리즘)

  • Kim, Moon-Jung;Kim, Jeong-Hun;Kim, Hyo-Jung;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.523-530
    • /
    • 2022
  • Since the Multi-UAV system for various missions is more complex than a single UAV, an efficient formation control method is required. In wide-area search mission, there is a need for a distributed control for flexible formation that has a low burden of communication and computation and enables autonomous formation between UAVs. This paper proposes a flexible formation operation method that considers the swarm formation, the bank alignment formation, and the formation movement to expand the scan area and improve search performance. The algorithm has a vibration characteristic of the second-order system for a relative distance and can design an algorithm through parameter tuning. In addition, we converted control commands to suit conventional UAV systems and demonstrated the performance of algorithms for a formation and movement of a formation through simulation.

Attitude Learning of Swarm Robot System using Bluetooth Communication Network (블루투스 통신 네트워크를 이용한 군집합로봇의 행동학습)

  • Jin, Hyun-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.137-143
    • /
    • 2009
  • Through the development of techniques, robots are becomes smaller, and many of robots needed for application are greater and greater. Method of coordinating large number of autonomous robots through local interactions has becoming an important research issue in robot community. Swarm Robot System is a system that independent autonomous robots in the restricted environment infer their status from preassigned conditions and operate their jobs through the coorperation with each other. Within the SRS,a robot contains sensor part to percept the situation around them, communication part to exchange information, and actuator part to do a work. Specially, in order to cooperate with other robots, communicating with other robot is one of the essential elements. In such as Bluetooth has many adventages such as low power consumption, small size module package, and various standard procotols, it is rated as one of the efficent communcating system for autonomous robot is developed in this paper. and How to construct and what kind of procedure to develop the communicatry system for group behavior of the SRS under intelligent space is discussed in this paper.

  • PDF

Design of Nonlinear Model Using Type-2 Fuzzy Logic System by Means of C-Means Clustering (C-Means 클러스터링 기반의 Type-2 퍼지 논리 시스템을 이용한 비선형 모델 설계)

  • Baek, Jin-Yeol;Lee, Young-Il;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.842-848
    • /
    • 2008
  • This paper deal with uncertainty problem by using Type-2 fuzzy logic set for nonlinear system modeling. We design Type-2 fuzzy logic system in which the antecedent and the consequent part of rules are given as Type-2 fuzzy set and also analyze the performance of the ensuing nonlinear model with uncertainty. Here, the apexes of the antecedent membership functions of rules are decided by C-means clustering algorithm and the apexes of the consequent membership functions of rules are learned by using back-propagation based on gradient decent method. Also, the parameters related to the fuzzy model are optimized by means of particle swarm optimization. The proposed model is demonstrated with the aid of two representative numerical examples, such as mathematical synthetic data set and Mackey-Glass time series data set and also we discuss the approximation as well as generalization abilities for the model.

Controller Optimization Algorithm for a 12-pulse Voltage Source Converter based HVDC System

  • Agarwal, Ruchi;Singh, Sanjeev
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.643-653
    • /
    • 2017
  • The paper presents controller optimization algorithm for a 12-pulse voltage source converter (VSC) based high voltage direct current (HVDC) system. To get an optimum algorithm, three methods namely conventional-Zeigler-Nichols, linear-golden section search (GSS) and stochastic-particle swarm optimization (PSO) are applied to control of 12 pulse VSC based HVDC system and simulation results are presented to show the best among the three. The performance results are obtained under various dynamic conditions such as load perturbation, non-linear load condition, and voltage sag, tapped load fault at points-of-common coupling (PCC) and single-line-to ground (SLG) fault at input AC mains. The conventional GSS and PSO algorithm are modified to enhance their performances under dynamic conditions. The results of this study show that modified particle swarm optimization provides the best results in terms of quick response to the dynamic conditions as compared to other optimization methods.

Remote Navigation Control for Intelligent Robot Using PSO (PSO를 이용한 지능형 로봇의 원격 주행 제어)

  • Mun, Hyun-Su;Joo, Young-Hoon
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.1
    • /
    • pp.64-69
    • /
    • 2010
  • In this paper, we propose remote navigation control for intelligent robot using particle swarm optimization(PSO). The proposed system consists of interfaces for intelligent robot navigation and user interface in order to control the intelligent robot remotely. And communication interfaces using TCP/IP socket is used. To do this, we first design the fuzzy navigation controller based on expert's knowledge for intelligent robot navigation. At this time, we use the PSO algorithm in order to identify the membership functions of fuzzy control rules. And then, we propose the remote system in order to navigate the robot remotely. Finally, we show the effectiveness and feasibility of the developed controller and remote system through some experiments.

Intelligent Control of Induction Motor Using Hybrid System GA-PSO

  • Kim, Dong-Hwa;Park, Jin-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1086-1091
    • /
    • 2005
  • This paper focuses on intelligent control of induction motor by hybrid system consisting of GA-PSO. Induction motor has been using in industrial area. However, it is challengeable on how we control effectively. From this point, an optimal solution using GA (Genetic Algorithm) and PSO (Particle Swarm Optimization) is introduced to intelligent control. In this case, it is possible to obtain local solution because chromosomes or individuals which have only a close affinity can convergent. To improve an optimal learning solution of control, This paper deal with applying PSO and Euclidian data distance to mutation procedure on GA's differentiation. Through this approaches, we can have global and local optimal solution together, and the faster and the exact optimal solution without any local solution. Four test functions are used for proof of this suggested algorithm.

  • PDF

A Study on Identification using Particle Swarm Optimization for 3-DOF Helicopter System (3-자유도 헬리콥터 시스템의 입자군집최적화 기법을 이용한 시스템 식별)

  • Lee, Ho-Woon;Kim, Tae-Woo;Kim, Tae-Hyoung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.105-110
    • /
    • 2015
  • This study proposes the more improved mathematical model than conventional that for the 3-DOF Helicopter System in Quanser Inc., and checks the validity about the proposed model by performance comparison between the controller based on the conventional model and that based on the proposed model. Research process is next : First, analyze the dynamics for the 3-DOF helicopter system and establish the linear mathematical model. Second, check the eliminated nonlinear-elements in linearization process for establishing the linear mathematical model. And establish the improved mathematical model including the parameters corresponding to the eliminated nonlinear-elements. At that time, it is used for modeling that Particle Swarm Optimization algorithm the meta-heuristic global optimization method. Finally, design the controller based on the proposed model, and verify the validity of the proposed model by comparison about the experimental results between the designed controller and the controller based on the conventional model.

Design of Modeling & Simulator for ASP Realized with the Aid of Polynomiai Radial Basis Function Neural Networks (다항식 방사형기저함수 신경회로망을 이용한 ASP 모델링 및 시뮬레이터 설계)

  • Kim, Hyun-Ki;Lee, Seung-Joo;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.554-561
    • /
    • 2013
  • In this paper, we introduce a modeling and a process simulator developed with the aid of pRBFNNs for activated sludge process in the sewage treatment system. Activated sludge process(ASP) of sewage treatment system facilities is a process that handles biological treatment reaction and is a very complex system with non-linear characteristics. In this paper, we carry out modeling by using essential ASP factors such as water effluent quality, the manipulated value of various pumps, and water inflow quality, and so on. Intelligent algorithms used for constructing process simulator are developed by considering multi-output polynomial radial basis function Neural Networks(pRBFNNs) as well as Fuzzy C-Means clustering and Particle Swarm Optimization. Here, the apexes of the antecedent gaussian functions of fuzzy rules are decided by C-means clustering algorithm and the apexes of the consequent part of fuzzy rules are learned by using back-propagation based on gradient decent method. Also, the parameters related to the fuzzy model are optimized by means of particle swarm optimization. The coefficients of the consequent polynomial of fuzzy rules and performance index are considered by the Least Square Estimation and Mean Squared Error. The descriptions of developed process simulator architecture and ensuing operation method are handled.