• Title/Summary/Keyword: swarm robot

Search Result 97, Processing Time 0.027 seconds

Managing Leader Robot of Swarm-Bots for Effective Terrain Exploration (효과적인 지형 탐사를 위한 군집 로봇의 리더 관리)

  • Song, Ju-Won;Woo, Gyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.527-530
    • /
    • 2010
  • 효과적으로 군집 로봇을 제어하기 위해 리더 로봇을 선정하여 특별한 역할을 부여하는 방법이 보편적으로 사용되고 있다. 본 논문에서는 효과적인 지형 탐사를 위해 군집 로봇 그룹의 리더를 관리하는 방법을 제안한다. 그룹에 리더가 없는 경우와 리더를 선정한 경우로 나누어 2차원 지형을 탐사하는 실험을 수행하였다. 지형을 탐사하는 과정에서 리더 로봇이 동작 불능 상태가 되는 경우가 발생할 수도 있는데, 이때에는 그룹의 리더를 교체하는 방법을 사용하였다. 그룹의 리더를 관리하는 방법을 시뮬레이션 환경에 적용하여 실험한 결과, 리더가 없는 경우보다 지형 탐사 성공률이 훨씬 높아지는 것을 알 수 있었다.

Swarm Robot Simulation for Collision Avoidance (군집로봇 간의 충돌 회피를 위한 시뮬레이션)

  • Cho, Chang-Kwon;Woo, Gyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.535-537
    • /
    • 2010
  • 군집로봇은 어떤 작업을 수행하기 위해 여러 로봇이 함께 움직이게 된다. 이렇게 여러 로봇이 함께 작업을 수행하다 보면 로봇 간의 충돌을 피해야 할 경우가 발생한다. 각 로봇은 주어진 환경을 인식하고 모델링하며 로봇들 간에 충돌을 피하여 주어진 임무를 효과적으로 이행할 수 있게 하는 것이 이 연구의 핵심이다. 로봇 간 충돌을 효과적으로 해결하기 위해 충돌 전 다양한 위치와 다양한 방법으로 충돌을 피할 수 있도록 했다. 따라서 이 논문에서는 카메라 센서와 위치정보 통신을 이용한 방법을 통해 군집로봇간의 충돌 회피에 대해 연구하였다.

Optimal EEG Channel Selection by Genetic Algorithm and Binary PSO based on a Support Vector Machine (Support Vector Machine 기반 Genetic Algorithm과 Binary PSO를 이용한 최적의 EEG 채널 선택 기법)

  • Kim, Jun Yeup;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.527-533
    • /
    • 2013
  • BCI (Brain-Computer Interface) is a system that transforms a subject's brain signal related to their intention into a control signal by classifying EEG (electroencephalograph) signals obtained during the imagination of movement of a subject's limbs. The BCI system allows us to control machines such as robot arms or wheelchairs only by imaging limbs. With the exact same experiment environment, activated brain regions of each subjects are totally different. In that case, a simple approach is to use as many channels as possible when measuring brain signals. However the problem is that using many channels also causes other problems. When applying a CSP (Common Spatial Pattern), which is an EEG extraction method, many channels cause an overfitting problem, and in addition there is difficulty using this technique for medical analysis. To overcome these problems, we suggest an optimal channel selection method using a BPSO (Binary Particle Swarm Optimization), BPSO with channel impact factor, and GA. This paper examined optimal selected channels among all channels using three optimization methods and compared the classification accuracy and the number of selected channels between BPSO, BPSO with channel impact factor, and GA by SVM (Support Vector Machine). The result showed that BPSO with channel impact factor selected 2 fewer channels and even improved accuracy by 10.17~11.34% compared with BPSO and GA.

Object tracking algorithm of Swarm Robot System for using SVM and Dodecagon based Q-learning (12각형 기반의 Q-learning과 SVM을 이용한 군집로봇의 목표물 추적 알고리즘)

  • Seo, Sang-Wook;Yang, Hyun-Chang;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.291-296
    • /
    • 2008
  • This paper presents the dodecagon-based Q-leaning and SVM algorithm for object search with multiple robots. We organized an experimental environment with several mobile robots, obstacles, and an object. Then we sent the robots to a hallway, where some obstacles were tying about, to search for a hidden object. In experiment, we used four different control methods: a random search, a fusion model with Distance-based action making(DBAM) and Area-based action making(ABAM) process to determine the next action of the robots, and hexagon-based Q-learning and dodecagon-based Q-learning and SVM to enhance the fusion model with Distance-based action making(DBAM) and Area-based action making(ABAM) process.

Development Fundamental Technologies for the Multi-Scale Mass-Deployable Cooperative Robots (멀티 스케일 다중 전개형 협업 로봇을 위한 요소 기술 개발)

  • Chu, Chong Nam;Kim, Haan;Kim, Jeongryul;Song, Sung-Hyuk;Koh, Je-Sung;Huh, Sungju;Ha, ChangSu;Kim, Jong Won;Ahn, Sung-Hoon;Cho, Kyu-Jin;Hong, Seong Soo;Lee, Dong Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • 'Multi-scale mass-deployable cooperative robots' is a next generation robotics paradigm where a large number of robots that vary in size cooperate in a hierarchical fashion to collect information in various environments. While this paradigm can exhibit the effective solution for exploration of the wide area consisting of various types of terrain, its technical maturity is still in its infant state and many technical hurdles should be resolved to realize this paradigm. In this paper, we propose to develop new design and manufacturing methodologies for the multi-scale mass-deployable cooperative robots. In doing so, we present various fundamental technologies in four different research fields. (1) Adaptable design methods consist of compliant mechanisms and hierarchical structures which provide robots with a unified way to overcome various and irregular terrains. (2) Soft composite materials realize the compliancy in these structures. (3) Multi-scale integrative manufacturing techniques are convergence of traditional methods for producing various sized robots assembled by such materials. Finally, (4) the control and communication techniques for the massive swarm robot systems enable multiple functionally simple robots to accomplish the complex job by effective job distribution.

Development of EEG Signals Measurement and Analysis Method based on Timbre (음색 기반 뇌파측정 및 분석기법 개발)

  • Park, Seung-Min;Lee, Young-Hwan;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.388-393
    • /
    • 2010
  • Cultural Content Technology(CT, Culture Technology) for the development of cultural industry and the commercialization of technology, cultural contents, media, mount, pass the value chain process and increase the added value of cultural products that are good for all forms of intangible technology. In the field of Culture Technology, Music by analyzing the characteristics of the development of a variety of applications has been studied. Associated with EEG measures and the results of their research in response to musical stimuli are used to detect and study is getting attention. In this paper, the musical stimuli in EEG signals by amplifying the corresponding reaction to the averaging method, ERP (Event-Related Potentials) experiments based on the process of extracting sound methods for removing noise from the ICA algorithm to extract the tone and noise removal according to the results are applied to analyze the characteristics of EEG.

Implementation of Agricultural Multi-UAV System with Distributed Swarm Control Algorithm into a Simulator (분산군집제어 알고리즘 기반 농업용 멀티 UAV 시스템의 시뮬레이터 구현)

  • Ju, Chanyoung;Park, Sungjun;Son, Hyoung Il
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.37-38
    • /
    • 2017
  • 최근 방제 및 예찰과 같은 농작업에 단일 UAV(Unmanned Aerial Vehicle)시스템이 적용되고 있지만, 가반하중과 체공시간 등 기존시스템의 문제가 점차 대두되면서 작업 시간을 보다 단축시키고 작업 효율을 극대화 할 수 있는 농업용 멀티 UAV시스템의 필요성이 증대되고 있다. 본 논문에서는 작업자가 다수의 농업용 UAV를 효과적으로 제어할 수 있는 분산군집제어 알고리즘을 제안하며 알고리즘 검증 및 평가를 위한 시뮬레이터를 소개한다. 분산군집제어는 UAV 제어 계층, VP(Virtual Point) 제어 계층, 원격제어 계층으로 이루어진 3계층 제어구조를 가진다. UAV 제어 계층에서 각 UAV는 point mass로 모델링 되는 VP의 이상적인 경로를 추종하도록 제어한다. VP 제어 계층에서 각 VP는 입력 $p_i(t)=u^c_i+u^o_i+u^{co}_i+u^h_i$-(1)을 받아 제어되는데 여기서, $u^c_i{\in}{\mathbb{R}}^3$는 VP 사이의 충돌방지제어, $u^o_i{\in}{\mathbb{R}}^3$는 장애물과의 충돌방지제어, $u^{co}_i{\in}{\mathbb{R}}^3$는 UAV 상호간의 협조제어, $u^h_i{\in}{\mathbb{R}}^3$는 작업자로부터의 원격제어명령이다. (1)의 제어입력에서 충돌방지제어는 각 $u^i_c:=-{\sum\limits_{j{\in}{\eta}_i}}{\frac {{\partial}{\phi}_{ij}^c({\parallel}p_i-p_j{\parallel})^T}{{\partial}p_i}}$-(2), $u^o_c:=-{\sum\limits_{r{\in}O_i}}{\frac {{\partial}{\phi}_{ir}^o({\parallel}p_i-p^o_r{\parallel})^T}{{\partial}p_i}}$-(3)로 정의되면 ${\phi}^c_{ij}$${\phi}^o_{ir}$는 포텐셜 함수를 나타낸다. 원격제어 계층에서 작업자는 햅틱 인터페이스를 통해 VP의 속도를 제어하게 된다. 이때 스케일변수 ${\lambda}$에 대하여 VP의 원격제어명령은 $u^t_i(t)={\lambda}q(t)$로 정의한다. UAV 시뮬레이터는 리눅스 환경에서 ROS(Robot Operating Systems)를 기반한 3차원 시뮬레이터인 Gazebo상에 구축하였으며, 마스터와 슬레이브 간의 제어 명령은 TCPROS를 통해 서로 주고받는다. UAV는 PX4 기반의 3DR Solo 모델을 사용하였으며 MAVROS를 통해 MAVLink 통신 프로토콜에 접속하여 UAV의 고도, 속도 및 가속도 등의 상태정보를 받을 수 있다. 현재 멀티 드론 시스템을 Gazebo 환경에 구축하였으며, 추후 시뮬레이터 상에 분산군집제어 알고리즘을 구현하여 검증 및 평가를 진행하고자 한다.

  • PDF