• Title/Summary/Keyword: sustained release

Search Result 355, Processing Time 0.021 seconds

Application of chitosan resin formulae as a sustained-releasing form adjuvant (키토산 resin formulae의 서방효과(sustained-releasing effect) 보조제로서의 활용)

  • Kim, Sang-Uk;Kang, Mun-Il;Lee, Jae-Il;Kim, Tae-Jung
    • Korean Journal of Veterinary Service
    • /
    • v.33 no.2
    • /
    • pp.173-176
    • /
    • 2010
  • Here, we report the suitability of using a resin-type chitosan formulae as a sustained-releasing form adjuvant in comparison with commercially well-known Freund's adjuvants. To induce the immunological responses, N-terminal region of Pasteurella multocida toxin was used as an antigen, which was found to be protective immunogen against P. multocida infection. Mice immunized with chitosan resin formulae showed statistically significant antibody induction (P<0.001) as much as that of Freund’s adjuvants. As a result, the resin-type sustained-releasing form chitosan formulae is thought to be a good candidate for a new type adjuvant.

New Coating Method for Sustained Drug Release: Surface Modification of ePTFE Grafts by inner coating PLGA

  • Kim, Hyeseon;Park, Seohyeon;Kim, Dae Joong;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1333-1336
    • /
    • 2014
  • Expanded polytetrafluoroethylene (ePTFE) grafts have been used as vascular access for many patients suffering from end stage renal disease. However, the vascular graft can cause significant clinical problems such as stenosis or thrombosis. For this reason, many studies have been performed to make drug eluting graft, but initial burst is major problem in almost drug eluting systems. Therefore we used biodegradable polymer to reduce initial burst and make sustained drug delivery. The ePTFE grafts were dipped into a paclitaxel-dissolved solution and then PLGA-dissolved solution was passed through the lumen of ePTFE. We analyzed whether the dose of paclitaxel is enough and the loading amount of PLGA on ePTFE graft increases according to the coating solution's concentration. Scanning electron microscope (SEM) images of various concentration of PLGA showed that the porous surface of graft was more packed with PLGA by tetrahydrofuran solution dissolved PLGA. In addition, in vitro release profiles of Ptx-PLGA graft demonstrated that early burst was gradually decreased as increasing the concentration of PLGA. These results suggest that PLGA coating of Ptx loaded graft can retard drug release, it is useful tool to control drug release of medical devices.

Controlled Release Dosage Form of Narcotic Antagonist(II) : Biocompatibility and Pharmacokinetics of Naloxone Implant (마약길항제의 방출 제어형 제제 (제2보): 나록손 이식제제의 생체적합성 및 약물속도론적 평가)

  • Moon, Mi-Ran;Park, Joo-Ae;Lee, Seung-Jin;Kim, Hyung-Kuk;Kim, Kil-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.2
    • /
    • pp.117-123
    • /
    • 1995
  • For the effective administration of narcotic antagonist, the application of sustained release implantable systems with biodegradable polyphosphazene was examined. Using poly[(diethyl glutamate)-co-(ethyl glycinate) phosphazene], the implantable devices containing naloxone hydrochloride were prepared and in vivo implantation studies were carried out subcutaneously in rat and rabbit with this preparation for the biocompatibility and pharmacokinetics. The histological finding in rats at initial time period was the inflammation that occurred focally around the implants, but they were showed subsequent mild and limited chronic inflammations and the irreversible changes such as necrosis and degeneration of the muscle or connective tissues were not observed. Therefore the placebo and naloxone implants are considered to be biocompatible formulations histologically. In pharmacokinetic studies, the release of naloxone from the naloxone implants into blood plasma was maintained in 192 hours, but the initial burst effect was observed. If this problem was solved, the application for the narcotic antagonist sustained release systems can be expected.

  • PDF

Inhibition of Calcium Transport by $(1R,9S)-\beta-Hydrastine$ Hydrochloride in PC12 Cells

  • Yin, Shou-Yu;Lee, Myung-Koo
    • Natural Product Sciences
    • /
    • v.12 no.4
    • /
    • pp.217-220
    • /
    • 2006
  • The effects of $(1R,9S)-\beta-hydrastine$ hydrochloride (BHSH) on $Ca^{2+}$ transport in rat pheochromocytoma PC12 cells were investigated. In the presence of external $Ca^{2+}$, BHSH at $100{\mu}M$ inhibited $K^+$ (56mM)-induced dopamine release, and $K^+-induced$ $Ca^{2+}$ influx and a sustained rise of $[Ca^{2+}]_i$. In addition, BHSH at 100 f.!M reduced the sustained rise of $[Ca^{2+}]_i$ elicited by 20 mM caffeine, but not by $1{\mu}M$ thapsigargin, in presence of external $Ca^{2+}$. These results suggest that BHSH inhibited $K^+-induced$ dopamine release and $[Ca^{2+}]_i$ influx, and store-operated $Ca^{2+}$ channels activated by caffeine, but not by thapsigargin, in PC12 cells.

Pharmacokinetic Evaluation of Flurbiprofen Sustained Release Capsule (플루르비프로펜 서방캅셀의 약물속도론적 평가)

  • Park, Kyoung-Ho;Lee, Min-Hwa;Yang, Min-Yeol;Lee, Chong-Won
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.3
    • /
    • pp.179-186
    • /
    • 1993
  • In vitro dissolution test and pharmacokinetic study in human volunteers were conducted to evaluate the pharmacokinetic characteristics of 150 mg furbiprofen sustained-release capsule (FPSR-150). As a reference product, 50 mg flurbiprofen conventional-release capsule (FPCR-50) was used. Dissolution tests of two products were run using the paddle method in 450 : 540 (v/v %) mixture of simulated gastric and intestinal fluids (K.P. VI) by adjusting medium pH according to time. FPCR-50 was dissolved very rapidly, and it took about 1.5 hr for FPCR-50 to be dissolved over 90%, whereas 15 hr for FPSR-150. Also, in pharmacokinetic study, ten healthy male volunteers were administered one capsule of FPSR-150 or two capsules of FPCR-50 (FPCR-l00) with randomized two period cross-over study. Significant differences between FPCR-l00 and FPSR-150 were found in mean times to reach peak concentration, mean resident times and mean terminal phase halflives, while not in AUC/Dose (Student's t-test). In ANOVA for AUC/Dose to compare the bioavailabilities of two FP products, there was no significant difference. From the comparison of the simulated steady-state plasma concentration-time curves following multiple medications of FPCR-50 (3 capsules a day, dosing interval=8 hrs) and FPSR-150 (1 capsule a day) based on the above results obtained from single doses of two FP products, it was noted that the medication of FPSR-150 is more useful in clinical application rather than FPCR-50.

  • PDF

Pharmaceutical Studies on Microencapsulated Etilefrine Hydrochloride (염산에틸에프린의 마이크로캅셀에 관한 약제학적 연구)

  • Kim, Johng-Kap;Choi, Soo-Il
    • Journal of Pharmaceutical Investigation
    • /
    • v.16 no.1
    • /
    • pp.12-17
    • /
    • 1986
  • Etilefrine hydrochloride was microencapsulated with ethylcellulose by phase separation method to develop a sustained release dosage form. The results of dissolution test carried out with various microcapsules showed that the drug release was decreased with increasing the particle size of microcapsules at a constant core to wall ratio, and with decreasing the core to wall ratio. Also ethylcellulose 50 cps and fast stirring rate (900 rpm) was better in decreasing the drug release than ethylcellulose 22 cps and slow stirring rate (300 rpm), respectively.

  • PDF

Reduced Burst Release from ePTFE Grafts: A New Coating Method for Controlled Drug Release

  • Nam, Hye-Yeong;Kim, Dae-Joong;Lim, Hyun-Jung;Lee, Byung-Ha;Baek, In-Su;Park, Sang-Hun;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.422-426
    • /
    • 2008
  • Hemodialysis graft coated with paclitaxel prevents stenosis; however, large initial burst release of paclitaxel causes many negative effects such as drug toxicity and inefficient drug loss. Therefore we developed and tested a novel coating method, double dipping, to provide controlled and sustained release of paclitaxel locally. Expanded polytetrafluoroethylene (ePTFE) grafts were dipped twice into a solution of several different paclitaxel concentrations. In vitro release tests of the double dipping method showed that early burst release could be somewhat retarded and followed by sustained release for a long time. We observed the effect of paclitaxel coating by double dipping in porcine model of arterio-venous (AV) grafts between the common carotid artery and the external jugular vein. 12 weeks after constructing AV grafts, cross sections of the graft venous anastomosis were obtained and analyzed. Paclitaxel coated ePTFE grafts by double dipping were observed to prevent neointimal hyperplasia and therefore reduced stenosis of the arteriovenous hemodialysis grafts, especially at the graft venous anastomosis sites. Our results demonstrate that second dipping of ePTFE graft, which was already coated once with paclitaxel, washes off the drug on a surface of the graft and affects the ratio of paclitaxel on the surface to that of the inner space, possibly by diffusion: thus the early burst of drug can be somewhat reduced.

Formulation of Sustained-release Tablets of Felodipine using Hydrophilic Polymers and Non-ionic Surfactants (친수성고분자 및 비이온성 계면활성제를 이용한 펠로디핀 서방정제의 설계)

  • Lee, Jin-Kyo;Yang, Sung-Woon;Lee, Bong-Sang;Jeon, Hong-Ryeol;Lee, Jae-Hwi;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.4
    • /
    • pp.271-276
    • /
    • 2006
  • Felodipine, a calcium-antagonist of dihydropyridine type, is a poorly water soluble drug and has very low bioavailability. As preceding studies, use of solid dispersion systems and surfactants(solubilizers) has been suggested to increase dissolution and to improve bioavailability of felodipine. But in case of solid dispersion systems, large amount of toxic organic solvents should be used and manufacturing process time become longer than conventional process. In case of using surfactants, as time elapsed, decreasing of dissolution rate of felodipine due to crystallization has been reported. In this study, Copovidon as a hydrophilic polymer and $Transcutol^{\circledR}$ as a surfactant were combined to formulations if order to increase dissolution of felodipine and conventional wet granulation process were applied to manufacturing of formulations. The effect of Copovidon and $Transcutol^{\circledR}$ on the dissolution oi felodipine was investigated in-vitro. When Copovidon and $Transcutol^{\circledR}$ used simultaneously, the dissolution rate of felodipine was prominently increased compared with when used separately and the maximum increase in the dissolution of felodipine was 5.8 fold compared to control. This is most probably due to synergy effect by combination of Copovidon and $Transcutol^{\circledR}$. Felodipine sustained release tablets were successfully formulated using several grades of HPMC as a release retarding agent. The stability of felodipine sustained release tablet was evaluated after storage at accelerated condition($40^{\circ}C/75%\;RH$) for 6months in HDPE(High density polyethylene) bottle. Neither significant degradation nor change of dissolution rate for felodipine was observed after 6months. In conclusion, felodipine sustained release tablet was successfully formulated and dissolution of felodipine, poorly water soluble drug, was prominently increased and also stability was guaranteed by using combination system of hydrophilic polymer and surfactant.