• Title/Summary/Keyword: sustained loading

Search Result 108, Processing Time 0.022 seconds

Self-Assembled Nanoparticles of Bile Acid-Modified Glycol Chitosans and Their Applications for Cancer Therapy

  • Kim Kwangmeyung;Kim Jong-Ho;Kim Sungwon;Chung Hesson;Choi Kuiwon;Kwon Ick Chan;Park Jae Hyung;Kim Yoo-Shin;Park Rang-Won;Kim In-San;Jeong Seo Young
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.167-175
    • /
    • 2005
  • This review explores recent works involving the use of the self-assembled nanoparticles of bile acid-modified glycol chitosans (BGCs) as a new drug carrier for cancer therapy. BGC nanoparticles were produced by chemically grafting different bile acids through the use of l-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). The precise control of the size, structure, and hydrophobicity of the various BGC nanoparticles could be achieved by grafting different amounts of bile acids. The BGC nanoparticles so produced formed nanoparticles ranging in size from 210 to 850 nm in phosphate-buffered saline (PBS, pH=7.4), which exhibited substantially lower critical aggregation concentrations (0.038-0.260 mg/mL) than those of other low-molecular-weight surfactants, indicating that they possess high thermodynamic stability. The SOC nanoparticles could encapsulate small molecular peptides and hydrophobic anticancer drugs with a high loading efficiency and release them in a sustained manner. This review also highlights the biodistribution of the BGC nanoparticles, in order to demonstrate their accumulation in the tumor tissue, by utilizing the enhanced permeability and retention (EPR) effect. The different approaches used to optimize the delivery of drugs to treat cancer are also described in the last section.

Time-dependent Analysis of Reinforced and Prestressed Concrete Structures Incorporating Creep Recovery Function (크리프 회복 거동을 고려한 철근콘크리트 및 프리스트레스트 콘크리트 부재의 장기거동해석에 관한 연구)

  • Kim, Se-Hoon;Oh, Byung-Hwan
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.279-288
    • /
    • 1999
  • The creep of concrete structures caused by variable stresses is generally calculated by step-by-step method based on the superposition of creep function. Although most practical application is carried out by this linear assumption. significant deviations between predictions and experiments have been observed when unloading takes place, that is. stress is reduced. This shows that the superposition of creep function does not describe accurately the effect of sustained compressive preload. The main purpose of this study is to propose a creep analysis model which is expressed with both creep function and creep recovery function where increase or decrease of stress is repeated. In these two function method, the creep behavior is modelled by using linear creep law for loading and creep recovery law for unloading. To apply two function method to time analysis of concrete structures, the calculation method of creep strain increment under varying stress is proposed. The calculation results based on the present method correlates very well with test data, but the conventional superposition method exhibits large deviation from test results. This paper provides a more accurate method for the time dependent analysis of concrete structures subjected to varying stress, i.e. increasing or decreasing stress. The present method may be efficiently employed in the revision of future concrete codes.

Local Drug Delivery System Using Biodegradable Polymers

  • Khang, Gil-Son;Rhee, John M.;Jeong, Je-Kyo;Lee, Jeong-Sik;Kim, Moon-Suk;Cho, Sun-Hang;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • v.11 no.4
    • /
    • pp.207-223
    • /
    • 2003
  • For last five years, we are developing the novel local drug delivery devices using biodegradable polymers, especially polylactide (PLA) and poly(D,L-lactide-co-glycolide) (PLGA) due to its relatively good biocompatibility, easily controlled biodegradability, good processability and only FDA approved synthetic degradable polymers. The relationship between various kinds of drug [water soluble small molecule drugs: gentamicin sulfate (GS), fentanyl citrate (FC), BCNU, azidothymidine (AZT), pamidronate (ADP), $1,25(OH)_2$ vitamin $D_3$, water insoluble small molecule drugs: fentanyl, ipriflavone (IP) and nifedipine, and water soluble large peptide molecule drug: nerve growth factor (NGF), and Japanese encephalitis virus (JEV)], different types of geometrical devices [microspheres (MSs), microcapsule, nanoparticle, wafers, pellet, beads, multiple-layered beads, implants, fiber, scaffolds, and films], and pharmacological activity are proposed and discussed for the application of pharmaceutics and tissue engineering. Also, local drug delivery devices proposed in this work are introduced in view of preparation method, drug release behavior, biocompatibility, pharmacological effect, and animal studies. In conclusion, we can control the drug release profiles varying with the preparation, formulation and geometrical parameters. Moreover, any types of drug were successfully applicable to achieve linear sustained release from short period ($1{\sim}3$ days) to long period (over 2 months). It is very important to design a suitable formulation for the wanting period of bioactive molecules loaded in biodegradable polymers for the local delivery of drug. The drug release is affected by many factors such as hydrophilicity of drug, electric charge of drug, drug loading amount, polymer molecular weight, the monomer composition, the size of implants, the applied fabrication techniques, and so on. It is well known that the commercialization of new drug needs a lot of cost of money (average: over 10 million US dollar per one drug) and time (average: above 9 years) whereas the development of DDS and high effective generic drug might be need relatively low investment with a short time period. Also, one core technology of DDS can be applicable to many drugs for the market needs. From these reasons, the DDS research on potent generic drugs might be suitable for less risk and high return.

Effect of Molecular Weight of PLGA on Release Behavior of Doxorubicin for Double-Layered PLGA Microspheres (PLGA 분자량에 따른 이중층 독소루비신 미립구의 방출거동)

  • Park, Jung-Soo;Yang, Jae-Chan;Yuk, Soon-Hong;Shin, Hyung-Shik;Rhee, John-M.;Kim, Moon-Suk;Lee, Hai-Bang;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.189-193
    • /
    • 2007
  • We developed the doxorubicin-loaded PLGA double-layered microspheres using relatively simple oil-in-water (O/W) solvent evaporation method for sustained release of doxorubicin and investigated the release behavior according to PLGA molecular weight and initial drug loading. The double-layered microsphere was characterized on the surface, the cross-section morphology, the behavior of doxorubicin release for 5 weeks by SEM and fluorescence spectrophotometer. Double-layered microspheres showed smooth surfaces and clear difference between core and outer-shell. As the PLGA molecular weight increased, the release rate of doxorubicin-loaded, double-layered microspheres decreased. These results showed that the release behaviors can be controlled by the variation of molecular weight of PLGA.

Preparation and Characterization of Deoxycholic Acid-Conjugated Low Molecular Weight Water-Soluble Chitosan Nanoparticles for Hydrophobic Antifungal Agent Carrier (소수성 항진균제 전달체로 응용하기 위한 데옥시콜릭산이 결합된 저분자량 수용성 키토산 나노입자의 제조와 특성)

  • Choi, Chang-Yong;Jung, Hyun;Nam, Joung-Pyo;Park, Yoon-Kyung;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.389-395
    • /
    • 2009
  • To develop the carrier of hydrophobic antifungal agents based on low molecular weight water-soluble chitosan (LMWSC), LMWSC was chemically modified with deoxycholic acid (DA) which is one of the bile acid as a hydrophobic group. The nanoparticles (WSCDA) using DA conjugated LMWSC were characterized using dynamic light scattering (DLS) and transmittance electron microscope (TEM). The particle size of WSCDA ranged from 250 to 350 nm and increased with the number of DA substitution. The loaded itraconazole as an antifungal agent WSCDA nanoparticles (WSCDA-ITCN) were prepared by solvent evaporation method. The drug content and the loading efficiency were investigated approximately $9{\sim}10%$ and $61{\sim}68%$ by UV spectrophotometer, respectively. The release of drug from nanoparticles was slow and showed sustained release characteristics. Based on the results of release study that the higher DA contents in WSCDA, the slower the releasing rate, the WSCDA-ITCN could be used as an excellent antifungal agent.

The Effect of Vanadium(V) Oxide Content of V2O5-WO3/TiO2 Catalyst on the Nitrogen Oxides Reduction and N2O Formation (질소산화물 환원과 N2O 생성에 있어서 V2O5-WO3/TiO2 촉매의 V2O5 함량 영향)

  • Kim, Jin-Hyung;Choi, Joo-Hong
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.313-318
    • /
    • 2013
  • In order to investigate the effect of $V_2O_5$ loading of $V_2O_5-WO_3/TiO_2$ catalyst on the NO reduction and the formation of $N_2O$, the experimental study was carried out in a differential reactor using the powder catalyst. The NO reduction and the ammonia oxidation were, respectively, investigated over the catalysts compose of $V_2O_5$ content (1~8 wt%) based on the fixed composition of $WO_3$ (9 wt%) on $TiO_2$ powder. $V_2O_5-WO_3/TiO_2$ catalysts had the NO reduction activity even under the temperature of $200^{\circ}C$. However, the lowest temperature for NO reduction activity more than 99.9% to treat NO concentration of 700 ppm appeared at 340 with very limited temperature window in the case of 1 wt% $V_2O_5$ catalyst. And the temperature shifted to lower one as well as the temperature window was widen as the $V_2O_5$ content of the catalyst increased, and finally reached at the activation temperature ranged $220{\sim}340^{\circ}C$ in the case of 6 wt% $V_2O_5$ catalyst. The catalyst of 8 wt% $V_2O_5$ content presented lower activity than that of 8 wt% $V_2O_5$ content over the full temperature range. NO reduction activity decreased as the $V_2O_5$ content of the catalyst increased above $340^{\circ}C$. The active site for NO reduction over $V_2O_5-WO_3/TiO_2$ catalysts was mainly related with $V_2O_5$ particles sustained as the bare surface with relevant size which should be not so large to stimulate $N_2O$ formation at high temperature over $320^{\circ}C$ according to the ammonia oxidation. Currently, $V_2O_5-WO_3/TiO_2$ catalysts were operated in the temperature ranged $350{\sim}450^{\circ}C$ to treat NOx in the effluent gas of industrial plants. However, in order to save the energy and to reduce the secondary pollutant $N_2O$ in the high temperature process, the using of $V_2O_5-WO_3/TiO_2$ catalyst of content $V_2O_5$ was recommended as the low temperature catalyst which was suitable for low temperature operation ranged $250{\sim}320^{\circ}C$.

Cyanobacterial Development and Succession and Affecting Factors in a Eutrophic Reservoir (부영양 저수지에서 남조류의 발달과 천이 및 영향 요인)

  • Kim, Ho-Sub;Hwang, Soon-Jin;Kong, Dong-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.121-129
    • /
    • 2007
  • This study was conducted to evaluate the causes and effects of cyanobacterial development and succession in a shallow eutrophic reservoir from March 2003 to February 2004. Phytoplankton succession, sedimentation rate, and sediment composition were analyzed. Algal bioassay also was conducted with the consideration of light, water temperature and nutrients. Cyanobacteria dominated throughout the year, except for spring season (March${\sim}$April) in which diatoms and flagellates dominated. Total cell density increased in July and November when P loading through inflows was high. Oscillatoria spp. and Aphanizomenon sp. were dominant in May and June, respectively, but replaced with Microcystis spp. in July. Thereafter, Microcystis spp. sustained until December, and again shifted to Oscillatoria spp. and Aphanizomenon sp. The dominance of Oscillatoria spp. in May was accompanied with high TN/TP ratio and the increase of water temperature and light intensity. While the dominance of Microcystis spp. was related with relatively low TN/TP ratio, ranging from 46 to 13 (average: 27). The sedimentation rate was highest in March (0.6 m $day^{-1}$) when diatoms dominated. During the period of cyanobacterial dominance, relatively high sedimentation rate was observed in May (0.4 m $day^{-1}$) and October (0.36m $day^{-1}$). C/N ratio of the sediment ranged $6{\sim}8$. Inorganic P concentration in the pore water was low when DO concentration was < 2 mg $O_2$ $L^{-1}$ in the hypolimnion, reflecting the P release from the sediment. Cyanobacterial growth rate depended on phosphorus concentration and water temperature, and high P concentration compensated for the low temperature in the growth rate. Our results suggest that the potential of cyanobacterial development and substantiality in eutrophic reservoirs be high throughout the year, as being supplied with enough P, and emphasize the consideration of sediment man. agement for the water quality improvement and algal bloom control.

Studies on the Mechanism of Contraction by Substance P in Rabbit Ileum (Substance P에 의한 가토 회장평활근의 수축기전에 대한 연구)

  • Jo, Se-Hun;Jung, Jin-Sup;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.18 no.2
    • /
    • pp.151-162
    • /
    • 1984
  • The mechanism of the contractile response of longitudial muscle of rabbit ileum to substance P (SP) has been investigated. The contractions in rabbit ileum under various conditions were recorded isometrically The following results were obtained. 1) The contractions by SP increased according to concentrations. SP·induced contraction was not sustained but faded rapidly at $10^{-7}M$. The response to the commutative addition of SP was decreased in comparison to the response to separate administration of each concentration . 2) The response to $10^{-8}M$ SP after 5 min application cf $10^{-7}M$ SP was increased with increasing the time interval between the administration of $10^{-7}$ and $10^{-8}M$ SP. 3) The treatment of rabbit ileum by $10^{-7}M$ SP for 5 min didn't decrease the response to $10^{-6}M$ acetylcholine. 4) $10^{-6}M$ atropine had no effect of the contractile response to $10^{-7}M$ SP. The response to $10^{-7}M$ SP was normal or subnormal in the presence of 3 mM tetraethylammonium(TEA). 5) 100k solution, $10^{-4}M$ ouabain, and Na-free solution inhibited the response to $10^{-8}M$ SP and 3 mM TEA completely, and to $10^{-7}M$ SP incompletely. 3 mM TEA induced a considerable contraction in K-free solution, but $10^{-8}M$ SP didn't induce the contraction. $10^{-6}M$ norepinephrine decreased the contractile responses to SP and TEA. 6) The contractile response to $10^{-7}M$ SP was dependent on the extracellular $Ca^{2+}$ concentrations to 1.8 mM. 7) The contractile response to $10^{-7}M$ SP remained 15% of the maximal response after bathing the ileum in a Ca-free solution for 2.5 min. 8) The responsiveness to SP was completely lost within 10 min of bathing in Ca-free solution, but was restored by the exposure to $Ca^{2+}$. The restorative effect of $Ca^{2+}$ depended on the concentration of $Ca^{2+}$, and on time for which the tissue exposed to this $Ca^{2+}$ concentration. These results suggest that there are two mechanisms of the action by which the low concentrations of substance P causes the contraction of intestinal smooth muscle: the reduction of K conductance and a mechanism dependent on the extracellular $Ca^{2+}$, and that high concentration of SP may elicit a contraction by releasing $Ca^{2+}$ from an intracellular store, which is not as sensitive to removal of extracellular $Ca^{2+}$ or as easily accessible to EGTA as the extracellular space of the muscle. The location of this store is not known; it may be associated with the internal side of the cell membrane.

  • PDF