• Title/Summary/Keyword: sustainable structure

Search Result 603, Processing Time 0.022 seconds

Joint Production and Disposal Decisions for Sustainable Operations of the Hybrid Production System (혼성 생산 시스템의 지속 가능 운영을 위한 신제품 생산과 회수제품 수용 통제의 통합 구현)

  • Kim, Eungab
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.5
    • /
    • pp.440-449
    • /
    • 2013
  • We consider a reverse supply chain with a production facility and a recovery facility, and address the joint control of production and disposal decisions for sustainable operations. Demands are satisfied from on-hand inventory of serviceable products, replenished via manufacturing or remanufacturing. Sold products may be returned after usage and each returned product is disposed of or accepted for recovery. Accepted returned products are converted into serviceable products after remanufacturing process. Formulating the model as a Markov decision process, we characterized the structure of the optimal production and disposal policy as two monotone switching curves under a special condition. Three types of heuristic policies are presented and their performance is numerically compared.

Options for sustainable earthquake-resistant design of concrete and steel buildings

  • Gilmore, Amador Teran
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.783-804
    • /
    • 2012
  • Because of its large contribution to the environmental instability of the planet, the building industry will soon be subjected to a worldwide scrutiny. As a consequence, all professionals involved in the building industry will need to create a professional media in which their daily work adequately solves the technical issues involved in the conception, design and construction of concrete and steel buildings, and simultaneously convey care for the environment. This paper discusses, from the point of view of a structural engineer involved in earthquake-resistant design, some of the measures that can be taken to promote the consolidation of a building industry that is capable of actively contributing to the sustainable development of the world.

System Dynamics Modeling for the Generic Structure of Economic Growth and the Sustainable Endogenous Growth Theory (경제성장에 대한 본원적 구조와 지속가능 내생적 성장이론에 대한 시스템 다이내믹스 모델링)

  • Jeon, Dae-Uk;Kim, Ji-Soo
    • Korean System Dynamics Review
    • /
    • v.10 no.1
    • /
    • pp.5-32
    • /
    • 2009
  • This paper revisited the key advances on System Dynamics modeling about traditional macro-economic models and economic growth structures, and then tries to elaborate a new model based on the endogenous growth theory that incorporates new growth factors, relevant to knowledge/technology as well as the Environment, into traditional growth models. Accordingly, the new model augments the acceleration and multiplier loops and the balancing ones representing market clearing mechanism with a simple numerical example. The authors thus provides macroeconomic System Dynamics analysts with a milestone to model macro-economic structures reflecting on traditional and cutting-edge theories on sustainable economic growth and general equilibrium modeling.

  • PDF

Thermodynamical bending analysis of P-FG sandwich plates resting on nonlinear visco-Pasternak's elastic foundations

  • Abdeldjebbar Tounsi;Adda Hadj Mostefa;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mofareh Hassan Ghazwani;Fouad Bourada;Abdelhakim Bouhadra
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.307-323
    • /
    • 2023
  • In this research, the study of the thermoelastic flexural analysis of silicon carbide/Aluminum graded (FG) sandwich 2D uniform structure (plate) under harmonic sinusoidal temperature load over time is presented. The plate is modeled using a simple two dimensional integral shear deformation plate theory. The current formulation contains an integral terms whose aim is to reduce a number of variables compared to others similar solutions and therefore minimize the computation time. The transverse shear stresses vary according to parabolic distribution and vanish at the free surfaces of the structure without any use of correction factors. The external load is applied on the upper face and varying in the thickness of the plates. The structure is supposed to be composed of "three layers" and resting on nonlinear visco-Pasternak's-foundations. The governing equations of the system are deduced and solved via Hamilton's principle and general solution. The computed results are compared with those existing in the literature to validate the current formulation. The impacts of the parameters (material index, temperature exponent, geometry ratio, time, top/bottom temperature ratio, elastic foundation type, and damping coefficient) on the dynamic flexural response are studied.

Using ICT for Mongolia's sustainable development in energy industry

  • Tungalag, Azjargal;Kim, Yun Seon
    • Asia Pacific Journal of Business Review
    • /
    • v.2 no.1
    • /
    • pp.21-52
    • /
    • 2017
  • Nowadays every technology is becoming smarter. Consequently, intensive use of ICT in the whole industries and cities enables a sustainable approach to meet enormous productivity, efficiency, transparency and conservation of natural recourses. Likewise, the role of ICT in terms of controlling, monitoring in the energy industry allows integrating potential renewables, bulk energy conservation and reliable optimized operation in the entire system. In this paper outlines challenging issues in renewable energy integration in Mongolia and proposes potential recommendations and conclusions. The author investigated the main technologies used in energy industry mainly smart grid, challenges and policy aspect in Mongolian energy sector by using the primary and secondary approach with case studies and literature based methodologies. Based on the policy aspect and current implementation of smart grid, the paper tries to address the readiness for the main application and future potential ICT driven applications. Furthermore, it concluded that ICT convergence is demanded to overcome the current vulnerabilities and significant momentum to leave behind by using its potential energy recourses and favorable geographical state. Policymakers may find this study useful, as it answers the question of whether ICT investment can ultimately reduce energy consumption and may aid in future planning. Even tough, in order to develop a smart grid and integrating renewables firstly set an appropriate market structure, ICT will key enabler to make energy system more profitable and sustainable. Regarding the result of this study, ICT deployment contribution is a huge demand for future opportunities energy in Mongolia.

Study of strength and microstructure of a new sustainable concrete incorporating pozzolanic materials

  • Grzegorz Ludwik Golewski
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.431-441
    • /
    • 2023
  • The aim of this paper is to present a new sustainable ternary and quaternary binder by partially replacing ordinary Portland cement (OPC) with different percentages of supplementary cementitious materials. The motivation is to reduce our dependency on OPC to reduce CO2 emission and carbon foot print. As the main substitute for the OPC, siliceous fly ash was used. Moreover, silica fume and nanosilica were also used. During examinations the main mechanical parameters of concrete composites, i.e., compressive strength (fcm) and splitting tensile strength (fctm) were assed. The microstructure of these materials was also analysed. It was found that the concrete incorporating pozzolanic materials is characterized by a well-developed structure and has high values of mechanical parameters. The quaternary concrete containing: 80% OPC, 5% FA, 10% SF, and 5% nS have shown the best results in terms of good strength parameters as well as the most favourable microstructure, whereas the worst mechanical parameters with microstructure containing microcracks at phase interfaces were characterized by concrete with more content of FA additive in the concrete mix, i.e., 15%. Nevertheless, all concretes made on quaternary binders had better parameters than the reference one. It can be stated that sustainable concrete incorporating pozzolanic materials could be good substitute of ordinary concretes.

Developing Inclusive Nutrition Education Direction for Sustainable Dietary Competency in Elementary Schools (초등학교 식생활교육에서 지속가능 식생활 역량 함양을 위한 포용적 식생활교육의 방향)

  • Kim, Hyun Joo
    • Journal of Korean Home Economics Education Association
    • /
    • v.35 no.1
    • /
    • pp.73-88
    • /
    • 2023
  • Since the enactment of the School Meal Support Act in 2009, South Korean dietary education has been evolving, placing health, environment, and consideration as its core values. The 3rd Basic Plan for Dietary Education (2020-2024) aims to achieve a sustainable dietary lifestyle that civic agriculture for collective consumption, healthy citizens, and an inclusive society. However, the digital civilization of the Fourth Industrial Revolution is significantly impacting dietary education in schools. Therefore, this study examines sustainable dietary education content in South Korean school meals, diagnoses the phenomena of dietary education facing digital transformation in education due to the Fourth Industrial Revolution, and explores directions for inclusive dietary education through concrete structures and content systems for inclusive dietary education that foster sustainable dietary capabilities. To achieve inclusive dietary education, a structure and system that allow cognitive, normative, and practical learning to be combined in an inclusive way is required. Furthermore, to practice sustainable dietary education, alternative approaches that emphasize the development of learners' core competencies are necessary in the direction of inclusive dietary education that fosters inclusivity.

Species Composition and Stand Structure of Natural Forest, Timber-harvested Forest and Degraded Forest in the Bago Yoma Region of Myanmar

  • Oo, Thaung Naing;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.572-579
    • /
    • 2007
  • Tree species diversity is an important aspect of forest ecosystem stability. Tree species inventories at defined sites and in minimum diameter classes give a reliable indicator of the diversity level as well as the structural stability level of a study site. This study was conducted to investigate the species composition and the stand structure of the natural forest, timber-harvested forest (logged-over forest) and degraded forest of the Oak-twin Township in the Bago Yoma Region of Myanmar. Natural forest showed the highest family and species richness in all the investigated forests. At the family level, Verbenaceae occupied the highest importance value index (IVI) in all the forest stands while teak (Tectona grandis Linn. f.) occupied the highest IVI at the species level. However, the small diameter classes of T. grandis and other commercial species were less than those of big diameter classes in all the investigated forests. This abnormal pattern of diameter distribution could be a problem for the sustainable production of commercial timber species in the near future.

EMERGY Analysis of Nakdong River Basin for Sustainable Use (낙동가 유역의 지속가능한 이용을 위한 EMERGY 분석)

  • 김진이;손지호;김영진;이석모
    • Journal of Environmental Science International
    • /
    • v.9 no.1
    • /
    • pp.49-55
    • /
    • 2000
  • An EMERGY analysis of the main energy flows driving the economy of humans and life support systems consists of environmental energies, fuels, and imports, all expresses as solar emjoules. Total EMERGY use(720.0 E20 sej/yr) of the Nakdong River Basin is 96 per cent from imported sources, fuels and goods and services. EMERGY flows from the environment such as rain and geological uplift flux accounted for only 4 percent of total EMERGY use. Consequently, the ratio of outside investment to attracting natural resources was large, like other industrialized areas. EMERGY use per person in the Nakdong River Basin indicates a moderate EMERGY standard of living, even though the indigenous resources are very poor. Population of 6.66 million people in 1996 is already in excess of carrying capacity of the basin. Carrying capacity for steady state based on its renewable sources in only 0.226 million people. EMERGY yield ratio and environment loading ratio were 1.07 and 28.52, respectively. EMERGY sustainability index, a ratio of EMERGY yield ratio to environment loading ratio, is therefore less than one, which is indicative of highly developed consumer oriented economies. This study suggests that the economic structure of the Nakdong River Basin should be transformed from the present industrial structure to the social-economic structure based on an ecological-recycling concept for the sustainable use of the Nakdong River.

  • PDF