• Title/Summary/Keyword: sustainable dairy farm

Search Result 7, Processing Time 0.022 seconds

De Marke, Dutch Model for Sustainable Dairy Farming (네덜란드 지속 낙농 모델 De Marke)

  • Ham, Jun-Sang;Choi, Yong-Soo;Fongers, Jan
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.71-76
    • /
    • 2014
  • The Netherlands produce more than 11 million tonnes of milk per year, and approximately 60% of the milk is exported. Dutch milk production is five times higher than that of Korea, even though Korea comprises a land area three times greater than the Netherlands. Upscaling and intensification have characterized the Dutch way of dairy farming since 1960, and adverse effects of the intensification of dairy farming became evident from the late 1970s and early 1980s onwards. The transition toward a more sustainable farming system is a central element of the Dutch agenda for the reconstruction of the livestock production sector. The environmental problems in Dutch dairy farming in the 1980s have led to the establishment of the experimental dairy farm "De Marke" which aims at improving the utilization of fertilizers and feeds, through minimizing nutrient requirements, maximizing the use of nutrients in organic manure and homegrown feeds, and through the targeted use of fertilizers and feeds. 85 cows at "De Marke" produce 720 tonnes of milk per year, using 55 ha of pasture in a sustainable manner. That means, 150,000 ha of pasture are required to produce 2 million tonnes of milk, which the current milk production of Korea. It is urgent to provide sufficient pasture for sustainable milk production in Korea, and primarily the transition to pasture of surplus rice paddies, resulting from of a decrease in rice consumption, should be considered.

  • PDF

Current Status and Prospect of Environmental friendly Farmstead Milk Processing in Korea (한국의 친환경적 목장형 유가공의 현황과 발전과제)

  • Bae, In-Hyu
    • Korean Journal of Organic Agriculture
    • /
    • v.18 no.2
    • /
    • pp.155-176
    • /
    • 2010
  • This study was conducted to research the status, history and prospects of farm scale milk processing and to develop a management strategy for small scale milk process plant in Korea. Also it aims to provide ways to apply it so as to vitalize the farm made milk products market practically. This study was also treats the practical development of dairy farm school programs through the farm scale milk processing. Farm-scale milk plant (FMP) should be some of the ideas to develop small scale and using the resources according to the local features, limited expanding in regional market, produce by consumers order amounts, management policy will be transferred organic dairy farm. A few policy suggestions to put FMP system of financial support would not from beginner, it is better to settled FMP system by government or co-operation group in practical support programs were proposed. What the state needs to do through direct involvement were to put efforts at demand expansion on FMP system products, to certificate and safety the farm made milk products marketing system settings, to build more variation chance of the milk products. What was more important, however, was support policy, to create the network of FMP market and to develop of training program contents for each FMP operation unit. The ideal FMP model for the development of Dairy Farming proposed in this research will be applied as a relevant reference in managing and realizing environmental friendly and sustainable dairy industry at the national level.

Corn stover usage and farm profit for sustainable dairy farming in China

  • He, Yuan;Cone, John W.;Hendriks, Wouter H.;Dijkstra, Jan
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.36-47
    • /
    • 2021
  • Objective: This study determined the optimal ratio of whole plant corn silage (WPCS) to corn stover (stems+leaves) silage (CSS) (WPCS:CSS) to reach the greatest profit of dairy farmers and evaluated its consequences with corn available for other purposes, enteric methane production and milk nitrogen efficiency (MNE) at varying milk production levels. Methods: An optimization model was developed. Chemical composition, rumen undegradable protein and metabolizable energy (ME) of WPCS and CSS from 4 cultivars were determined to provide data for the model. Results: At production levels of 0, 10, 20, and 30 kg milk/cow/d, the WPCS:CSS to maximize the profit of dairy farmers was 16:84, 22:78, 44:56, and 88:12, respectively, and the land area needed to grow corn plants was 4.5, 31.4, 33.4, and 30.3 ha, respectively. The amount of corn available (ton DM/ha/yr) for other purposes saved from this land area decreased with higher producing cows. However, compared with high producing cows (30 kg/d milk), more low producing cows (10 kg/d milk) and more land area to grow corn and soybeans was needed to produce the same total amount of milk. Extra land is available to grow corn for a higher milk production, leading to more corn available for other purposes. Increasing ME content of CSS decreased the land area needed, increased the profit of dairy farms and provided more corn available for other purposes. At the optimal WPCS:CSS, MNE and enteric methane production was greater, but methane production per kg milk was lower, for high producing cows. Conclusion: The WPCS:CSS to maximize the profit for dairy farms increases with decreased milk production levels. At a fixed total amount of milk being produced, high producing cows increase corn available for other purposes. At the optimal WPCS:CSS, methane emission intensity is smaller and MNE is greater for high producing cows.

Effect of Experience, Education, Record Keeping, Labor and Decision Making on Monthly Milk Yield and Revenue of Dairy Farms Supported by a Private Organization in Central Thailand

  • Yeamkong, S.;Koonawootrittriron, S.;Elzo, M.A.;Suwanasopee, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.6
    • /
    • pp.814-824
    • /
    • 2010
  • The objective of this research was to assess the effect of experience, education, record keeping, labor, and decision making on monthly milk yield per farm (MYF), monthly milk yield per cow (MYC), monthly milk revenue per farm (MRF), and monthly revenue per cow (MRC) of dairy farms supported by a private organization in Central Thailand. The dataset contained 34,082 monthly milk yield and revenue records collected from January 2004 to December 2008 on 497 farms, and information on individual farmer experience and education, record keeping, and decision making obtained with a questionnaire. Farmer experience categories were i) no experience, ii) one year, iii) two to five years, iv) six to ten years, v) eleven to fifteen years, vi) sixteen to twenty years, and vii) more than twenty years. Farmer education categories were i) no education or primary school, ii) high school, and iii) bachelor or higher degree. Record keeping categories were: i) no records and ii) kept records. Labor categories were: i) family, ii) hired people, and iii) family and hired people. Decision making categories were: i) decisions made by farmers themselves, ii) decisions made with help from government officials, and iii) decisions made with help from organization staff. The mixed linear model contained the fixed effects of year-season, farm location-farm size subclass, experience, education, record keeping, labor, and decision making on sire selection, and the random effects of farm and residual. Results showed that longer experience increased (p<0.05) monthly milk yield (MYF and MYC) and revenue (MRF and MRC). Farms that hired people produced the highest (p<0.05) monthly milk yield (MYF and MYC) and revenue (MRF and MRC), followed by farms that used family, and the lowest values were for farms that used both family and hired people. Better educated farmers produced more MYC and MRC (p<0.05) than lower educated farmers. Farms that kept records had higher MYF and MRF (p<0.05) than those without records. Although differences among farms were non-significant, farms that received help from the organization staff had higher monthly milk yield (MYF and MYC) and revenue (MRF and MRC) than those that decided by themselves or with help from government officials. These findings suggested that dairy farmers needed systematic training and continuous support to improve farm milk production and revenues in a sustainable manner.

Participation Scheme of Smallholder Dairy Farmers in the Northeast Thailand on Improving Feeding Systems

  • Wanapat, M.;Pimpa, O.;Petlum, A.;Wachirapakorn, C.;Yuanklang, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.6
    • /
    • pp.830-836
    • /
    • 2000
  • A participation scheme involving smallholder dairy farmers in improving dairy productivity through the use of local feeds, on-farm established feeds and crop residues was carried out in the Northeast, Thailand. At six milk collection centers, 63 farmers with 340 lactating cows participated in this research and demonstration of feed supplements. Farmers and cows were allotted to receive respective feed supplements: high-quality feed block (HQFB), high-quality feed pellet (HQFP), dried cassava leaf/cassava hay, dried leucaena leaf and cottonseed meal: 5% urea treated rice straw was fed as a source of roughage throughout the feeding period of the dry season. Trainings and workshops were organized by the researchers at the University, research station, demonstration sites and on-farms. Regular visits to the fartns by researchers and extension officers were made while discussions and demonstrations were performed in addition. Participating farmers also visited other farmers during the demonstration which offered a real practical perspective and farmer-to-farmer interaction. As a result of this participation and demonstration scheme, the farmers could learn more effectively and accepted the technology more readily, especially the practicality of the feed preparation, feed establishment, feeding method and feed reserve. Strategic supplementation of these feed supplements resulted in improving milk yield, milk quality, overall condition of the cows and higher income return through increased productivity and lower level use of concentrate to milk yield from 1:2 to 1:3 or lower. Based on this research and demonstration /participation scheme, all feed supplements enhanced productivity, however the establishment of cassava hay on fartns deserved more attention and warrants a wider developmental expansion among dairy farmers since it contained high rumen by-pass protein (tannin-protein complex) and could be easily produced and be sustainable on farms.

Application of a Simulation Model for Dairy Cattle Production Systems Integrated with Forage Crop Production: the Effects of Whole Crop Rice Silage Utilization on Nutrient Balances and Profitability

  • Kikuhara, K.;Hirooka, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.216-224
    • /
    • 2009
  • In Japan, since rice consumption has been decreasing with the westernization of Japanese eating habits, surplus paddy fields have been increasing. If these surplus paddy fields can be utilized for forage rice production as feed for animal production and excretions (feces and urine) from animal production can be applied to the paddy fields as manure, then the problems of surplus paddy fields and excretions from animal production may be solved, and the environment kept sustainable. The objectives of the present study were to apply a bio-economic model to dairy and forage rice integration systems in Japan and to examine the merit of introducing whole crop rice silage (WCRS), as well as economic and environmental effects of various economic and management options in the systems. Five simulations were conducted using this model. The use of WCRS as a home-grown feed increased environmental loads and decreased economic benefit because of the higher amount of purchased feed, when compared to the use of typical crops such as maize, alfalfa and timothy silage (simulation 1). Higher economic benefits from higher forage rice yields and higher milk production of a dairy cow were obtained (simulations 2, 3). There were no economic and environmental incentives for utilizing crude protein (CP) rich WCRS, because an increase in the CP content in WCRS led to the use of more chemical fertilizers, resulting in high production costs and nitrogen outputs (simulation 4). When evaluated under the situation of a fixed herd size, increasing forage rice yields decreased the total benefit of the production, in spite of the fact that the amount of subsidies per unit of land increased (simulation 5). It was indicated that excess subsidy support may not promote yield of forage rice. It was, however, observed in most cases that dairy and forage rice integration systems could not be economically established without subsidies.

Design and Implementation of the Farm-level Data Acquisition System for the Behavior Analysis of Livestocks (가축의 행동 분석을 위한 농장 수준의 데이터 수집 시스템 설계와 구현)

  • Park, Gi-Cheol;Han, Su-Young
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.2
    • /
    • pp.117-124
    • /
    • 2021
  • Livestock behavioral analysis is a factor that has a great influence on livestock health management and agricultural productivity increase. However, most digital devices introduced for behavioral analysis of livestock do not provide raw data and also provide limited analysis results. Such a closed system makes it more difficult to integrate data and build big data, which are essential for the introduction of advanced IT technologies. Therefore, it is necessary to supply farm-scale data collection devices that can be easily used at low cost. This study presents a data collection system for analyzing the behavior of livestock. The system consists of a number of miniature computing units that operate wirelessly, and collects livestock body temperature and acceleration data, location information, and livestock environment data. In addition, this study presents an algorithm for estimating the behavior of livestock based on the collected acceleration data. For the experiment, a system was built in a Korean cattle farm in Icheon, Gyeonggi-do, and data were collected for 20 Korean cattle, and based on this, the empirical and analysis results were presented.