• Title/Summary/Keyword: sustainable composite

Search Result 126, Processing Time 0.028 seconds

Sustainable Water Resources Planning to Prevent Streamflow Depletion in an Urban Watershed: 2. Application (도시유역의 건천화 방지를 위한 지속가능한 수자원 계획: 2. 적용)

  • Lee, Kil-Seong;Cung, Eun-Sung;Shin, Mun-Joo;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.11 s.172
    • /
    • pp.947-960
    • /
    • 2006
  • This study shows the application of sustainable water resource planning procedure developed in the previous paper. Its goal is to prevent the streamflow depletion in upstream watershed of the Anyangcheon which is a typical urban stream. The pressure-state-response model which is the framework to reflect the sustainability was applied. The composite programming which is the multilevel multicriteria decision making technique is also used in the calculation of state and evaluation index. The feasible alternatives were proposed and hydrologically analyzed by SWAT(Soil and Water Assessment Tool) and the priority ranking of alternatives were proposed based on the results of SWAT.

Effect of visco-Pasternak foundation on thermo-mechanical bending response of anisotropic thick laminated composite plates

  • Fatima Bounouara;Mohamed Sadoun;Mahmoud Mohamed Selim Saleh;Abdelbaki Chikh;Abdelmoumen Anis Bousahla;Abdelhakim Kaci;Fouad Bourada;Abdeldjebbar Tounsi;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.693-707
    • /
    • 2023
  • This article investigates the static thermo-mechanical response of anisotropic thick laminated composite plates on Visco-Pasternak foundations under various thermal load conditions (linear, non-linear, and uniform) along the transverse direction (thickness) of the plate, while keeping the mechanical load constant. The governing equations, which represent the thermo-mechanical behavior of the composite plate, are derived from the principle of virtual displacements. Using Navier's type solution, these equations are solved for the composite plate with simply supported condition. The Visco-Pasternak foundation type is included by considering the impact of the damping on the classical foundation model, which is modeled by Winkler's linear modulus and Pasternak's shear modulus. The excellent accuracy of the present solution is confirmed by comparing the results with those available in the literature. The study investigates the impact of geometric ratios, thermal expansion coefficient ratio, damping coefficient and foundation parameters on the thermo-mechanical flexural response of the composite plate. Overall, this article provides insights into the behavior of composite plates on visco-Pasternak foundations and may be useful for designing and analyzing composite structures in practical applications.

Fabrications and Evaluations of Hydrogen Permeation on TIN-M(Co, NI) Composite Membrane (TIN-M(M=Co, NI) 복합 분리막의 제조 및 수소투과 특성평가)

  • Kim, Kyeong-Il;Yoo, Sung-Woong;Hong, Tae-Whan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.4
    • /
    • pp.264-270
    • /
    • 2010
  • Recently, the most promising methods for high purity hydrogen production are membranes separation such as polymer, metal, ceramic and composites. It is well known that Pd and Pd-alloys membranes have excellent properties for hydrogen separation. However, it has hydrogen embrittlement and high cost for practical applications. Therefore, most scientists have studied new materials instead of Pd and Pd-alloys. On the other hand, TiN powders are great in resistance to acids and chemically stable under high operating temperature. In order to get specimens for hydrogen permeation, the TiN powders synthesized were consolidated together with Co, Ni powders by hot press sintering (HPS). During the consolidation of powders at HPS, heating rate was 10 K/min and the pressure was 10 MPa. It was characterized by XRD, SEM. Also, we estimated the hydrogen permeability by Sievert's type hydrogen permeation membrane equipment.

Prediction of ultimate moment anchorage capacity of concrete filled steel box footing

  • Bashir, Muhammad Aun;Furuuchi, Hitoshi;Ueda, Tamon;Bashir, M. Nauman
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.645-658
    • /
    • 2013
  • The objective of the study is to predict the moment anchorage capacity of the concrete filled steel box (CFSB) as footing by using the 3D finite element program CAMUI developed by authors' laboratory. The steel box is filled with concrete and concrete filled steel tube (CFT) column is inserted in the box. Numerical simulation of the experimental specimens was carried out after introducing the new constitutive model for post peak behavior of concrete in compression under confinement. The experimental program was conducted to verify the reliability of the simulation results by the FE program. The simulated peak loads agree reasonably with the experimental ones and was controlled by concrete crushing near the column. After confirming the reliability of the FEM simulation, effects of different parameters on the moment anchorage capacity of concrete filled steel box footing were clarified by conducting numerically parametric study.

Finite element analysis of CFT columns subjected to pure bending moment

  • Hu, H.T.;Su, F.C.;Elchalakani, M.
    • Steel and Composite Structures
    • /
    • v.10 no.5
    • /
    • pp.415-428
    • /
    • 2010
  • Proper material constitutive models for concrete-filled tube (CFT) columns of circular cross section and subjected to pure bending moment are proposed. These material models are implemented into the Abaqus finite element program and verified against experimental data. It has been shown that the steel tube does not provide good confining effect to the concrete core when the CFT columns is subjected to pure bending moment. When the diameter-to-thickness ratio of the CFT columns is small, the behavior of the CFT column is the same as the steel tube without a concrete core.

A Study on the Reuse of School Facilities in the Downtown Deagu (대구도심 폐교시설 활용방안에 관한 연구)

  • Heo, Sung-Hoon;Lee, Jong-Kuk
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.10 no.3
    • /
    • pp.27-35
    • /
    • 2011
  • This study is processing to analyze the causes and to suggest the solution about extension of closed schools which comes from urban decay in the city. The meaning of this report is based on the purpose to help the substantial application of the equipments of closed schools. This is used by groping the composite application scheme for improving the values of recycling facilities of closed schools which is according to abolition and amalgamation. To complete the purpose of this report, many documents, records and corroborative evidences were used to process this study. We suggest the program that is available to invest space. That is analyzed the environment and the social application that the building has is proper or not.

Effect of parameters on the tensile behaviour of textile-reinforced concrete composite: A numerical approach

  • Tien M. Tran;Hong X. Vu;Emmanuel Ferrier
    • Advances in concrete construction
    • /
    • v.16 no.2
    • /
    • pp.107-117
    • /
    • 2023
  • Textile-reinforced concrete composite (TRC) is a new alternative material that can satisfy sustainable development needs in the civil engineering field. Its mechanical behaviour and properties have been identified from the experimental works. However, it is necessary for a numerical approach to consider the effect of the parameters on TRC's behaviour with lower analysis duration and cost related to the experiment. This paper presents obtained results of the numerical modelling for TRC composite using the cracking model for the cementitious matrix in TRC. As a result, the TRC composite exhibited a strain-hardening behaviour with the cracking phase characterized by the drops in tensile stress on the stress-strain curve. This model also showed the failure mode by multi-cracking on the TRC specimen surface. Furthermore, the parametric studies showed the effect of several parameters on the TRC tensile behaviour, as the reinforcement ratio, the length and position of the deformation measurement zone, and elevated temperatures. These numerical results were compared with the experiment and showed a remarkable agreement for all cases of this study.

Experimental and numerical investigation of fiber-reinforced slag-based geopolymer precast tunnel lining segment

  • Arass Omer Mawlod;Dillshad Khidhir Hamad Amen Bzeni
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.47-59
    • /
    • 2024
  • In this study, a new sustainable material was proposed to prepare precast tunnel lining segments (TLS), which were produced using a fiber-reinforced slag-based geopolymer composite. Slag was used as the geopolymer binder. In addition, polypropylene and carbon fibers were added to reinforce TLSs. TLSs were examined in terms of flexural performance, load-deflection response, ductility, toughness, crack characteristics, and tunnel boring machine (TBM) thrust force. Simultaneously, numerical simulation was performed using finite element analysis. The mechanical characteristics of the geopolymer composite with a fiber content of 1% were used. The results demonstrated that the flexural performance and load-deflection response of the precast TLSs were satisfactory. Furthermore, the numerical results were capable of predicting and realistically capturing the structural behavior of precast TLSs. Therefore, fiber-reinforced slag-based geopolymer composites can be applied as precast TLSs.

Fluidity and compressive strength characteristics of no-cement composite according to fly ash replacement rate (플라이애시 대체율에 따른 무시멘트 복합체의 유동성 및 압축강도 특성)

  • Lee, Jae-In;Park, Jeong-Yeon;Kim, Chae-Young;Yoon, Joo-Ho;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.195-196
    • /
    • 2023
  • Recently, the importance of eco-friendly and sustainable development has been emphasized. The construction industry also needs to make efforts to reduce cement use, which accounts for 8% of greenhouse gas emissions. This study examined the fluidity and compressive strength of a cementless composite using fine blast furnace slag powder and fly ash without using cement in order to reduce greenhouse gas emissions due to the use of cement.

  • PDF

Lessons Learned from Eco-town Cases for Sustainable Development (지속가능한 발전을 위한 국제 에코타운개발 사례분석)

  • Chang, Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1253-1260
    • /
    • 2013
  • Eco-town development projects have often prevailed throughout the World to initiate the new form of sustainable development plans. As a future development type, the eco-town project shares underlying notions with sustainable development, which has been recently revised into a wider definition; (i) energy efficiency, (ii) climate adaptation, and (iii) socio-economic development. There are four types of eco-town projects based on its characteristics and aims depending on project sites, regions, or countries. This paper tried to demonstrate the types of eco-town projects and summarizes its strategy plans from each type. Many eco-town cases can be placed in one of types, however there cannot be strictly discrete classification by its complicated and composite characteristics of them. In conclusion, the analyzed types can be a useful strategy plan for pursuing further eco-town projects in domestic as well as in international regions.