• Title/Summary/Keyword: sustainable biomass

Search Result 161, Processing Time 0.029 seconds

Polypropylene Bundle Attached Multilayered Stigeoclonium Biofilms Cultivated in Untreated Sewage Generate High Biomass and Lipid Productivity

  • Kim, Byung-Hyuk;Kim, Dong-Ho;Choi, Jung-Woon;Kang, Zion;Cho, Dae-Hyun;Kim, Ji-Young;Oh, Hee-Mock;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1547-1554
    • /
    • 2015
  • The potential of microalgae biofuel has not been realized because of the low productivity and high costs associated with the current cultivation systems. In this study, a new low-cost and transparent attachment material was tested for cultivation of a filamentous algal strain, Stigeoclonium sp., isolated from wastewater. Initially, the different materials tested for Stigeoclonium cultivation in untreated wastewater were nylon mesh, polyethylene mesh, polypropylene bundle (PB), polycarbonate plate, and viscose rayon. Among the materials tested, PB led to a firm attachment, high biomass (53.22 g/m2, dry cell weight), and total lipid yield (5.8 g/m2) with no perceivable change in FAME profile. The Stigeoclonium-dominated biofilm consisted of bacteria and extracellular polysaccharide, which helped in biofilm formation and for effective wastewater treatment (viz., removal efficiency of total nitrogen and total phosphorus corresponded to ~38% and ~90%, respectively). PB also demonstrated high yields under multilayered cultivation in a single reactor treating wastewater. Hence, this system has several advantages over traditional suspended and attached systems, with possibility of increasing areal productivity three times using Stigeoclonium sp. Therefore, multilayered attached growth algal cultivation systems seem to be the future cultivation model for large-scale biodiesel production and wastewater treatment.

Electrical Energy Production Using Biomass (바이오매스 기반 전기에너지 생산기술 동향 분석)

  • Jongseo Lee;Sang-Soo Han;Doyeun Kim;JuHyun Kim;Sangjin Park
    • New & Renewable Energy
    • /
    • v.19 no.1
    • /
    • pp.12-21
    • /
    • 2023
  • Governments and global companies are working towards using renewable sources of energy, such as solar, wind, and biomass, to reduce dependency on fossil fuels. In the defense sector, the new strategy seeks to increase the sustainable use of renewable energy sources to improve energy security and reduce military transportation. Renewable energy technologies are affected by factors such as climate, resources, and policy environments. Therefore, governments and global companies need to carefully select the optimal renewable energy sources and deployment strategies. Biomass is a promising energy source owing to its high energy density and ease of collection and harvesting. Many techniques have been developed to convert the biomass into electrical energy. Recently, diverse types of fuel cells have been suggested that can directly convert the chemical energy of biomass into electrical energy. The recently developed biomass flow fuel cell has significantly enhanced the power density several hundred times, reaching to ~100 mW/cm2. In this review, we explore various strategies for producing electrical energy from biomass using modern methods, and discuss the challenges and potential prospects of this method.

Hydrogen Production Technology (수소생산기술현황)

  • Joo, Oh-Shim
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.688-696
    • /
    • 2011
  • Hydrogen is one of the few long-term sustainable clean energy carriers, emitting only water as by-products during its combustion or oxidation. The use of fossil fuels to produce hydrogen makes large amount of carbon dioxide (>7 kg $CO_{2}$/kg $H_{2}$) during the reforming processes. Hydrogen production can be environmentally benign only if the energy and the resource to make hydrogen is sustainable and renewable. Biomass is an attractive alternative to fossil fuels for carbon dioxide because of the hydrogen can be produced by conversion of the biomass and the carbon dioxide formed during hydrogen production is consumed by biomass generation process. Hydrogen production using solar energy also attracts great attention because of the potential to use abundance natural energy and water.

Chemical and Biological Indicators of Soil Quality in Conventional and Organic Farming Apple Orchards

  • Lee, Yoon-Jung;Chung, Jong-Bae
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.2
    • /
    • pp.88-96
    • /
    • 2007
  • Organic farming systems based on ecological concepts have the potential to produce sustainable crop yields with no decline in soil and environmental qualities. Recent expansion of sustainable agricultural systems, including organic farming, has brought about need for development of sustainable farming systems based on value judgments for key properties of importance for farming. Chemical and microbiological properties were chosen as indicators of soil quality and measured at soil depth intervals of 5-20 and 20-35 cm in conventional and organic-based apple orchards located in Yeongchun, Gyeongbuk. The orchards were two adjacent fields to ensure the same pedological conditions except management system. Soil pH in organic farming was around 7.5, whereas below 6.0 in conventional farming. Organic farming resulted in significant increases in organic matter and Kjeldahl-N contents compared to those found with conventional management. Microbial populations, biomass C, and enzyme activities (except acid phosphatase) in apple orchard soil of organic farming were higher than those found in conventional farming. Higher microbial quotient ($C_{mic}/C_{org}$ ratio) and lower microbial metabolic quotient for $CO_2(qCO_2)$ in organic farming confirmed that organic farming better conserves soil organic carbon. Biological soil quality indicators showed significant positive correlations with soil organic matter content. These results indicate organic-based farming positively affected soil organic matter content, thus improving soil chemical and biological qualities.

Biomass Changes of a Human-influenced Pine Forest and Forest Management in Agricultural Landscape System (인간간섭하의 소나무림의 현존량변화와 농촌경관시스템내에서의 산림관리)

  • Hong, Sun-Kee;Nobukazu Nakagoshi
    • The Korean Journal of Ecology
    • /
    • v.19 no.4
    • /
    • pp.305-320
    • /
    • 1996
  • It is necessary to obtain information about the productivity of the human-influenced forest and to understand the consumption of biomass resources in secondary forest in order to examine the resource flux by human activity in rural landscape. Thus the aims of this study were to elucidate the biomass and their use of secondary Pinus densiflora forests and to discuss sustainable utilization of secondary forests in rural landscape system. This study was carried out in Yanghwa-ri, Kongjugun, Chungcheongnam-do, central Korea. The changes of growth rate and aboveground biomass of a pine forest for 2 years were analyzed to understand forest management regimes in rural pine forests. Through allometric equations deduced from 25 sample trees, biomass was estimated. The biomass increase of pine forest was approximately 16.36 t/ha/yr in the unexploited stand and 12.24 t/ha/yr in the exploited stand. These were nearly equal to those of natural pine forests in central Korea. This result proved that human-influenced pine forest in rural landscape as well as the natural one has high potentiality to provide forest products. Making graveyard in forest-land was the important disturbance and land-use which currently occurring in rural landscape in the study area. Finally, we presented some forest management for stutainable and positive uses of secondary forests as one of the local energy resources in terms of the holistic landscape-ecological view.

  • PDF

Interactions Between MTHFR C677T - A1298C Variants and Folic Acid Deficiency Affect Breast Cancer Risk in a Chinese Population

  • Wu, Xia-Yu;Ni, Juan;Xu, Wei-Jiang;Zhou, Tao;Wang, Xu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2199-2206
    • /
    • 2012
  • Background: Our objective was to evaluate the MTHFR C677T-A1298C polymorphisms in patients with breast cancer and in individuals with no history of cancer, to compare the levels of genetic damage and apoptosis under folic acid (FA) deficiency between patients and controls, and to assess associations with breast cancer. Methods: Genetic damage was marked by micronucleated binucleated cells (MNBN) and apoptosis was estimated by cytokinesis-block micronucleus assay (CBMN). PCR-RFLP molecular analysis was carried out. Results: The results showed significant associations between the MTHFR 677TT or the combined MTHFR C677T-A1298C and breast cancer risk (OR = 2.51, CI = 0.85 to 7.37, p = 0.08; OR = 4.11, CI = 0.78 to 21.8, p < 0.001). The MNBN from the combined MTHFR C677T-A1298C was higher and the apoptosis was lower than that of the single variants (p < 0.05). At 15 to 60 nmol/L FA, the MNBN in cases with the TTAC genotype was higher than controls (p < 0.05), whereas no significant difference in apoptosis was found between the cases and controls after excluding the genetic background. Conclusions: Associations between the combined MTHFR C677T-A1298C polymorphism and breast cancer are possible from this study. A dose of 120 nmol/L FA could enhance apoptosis in cases with MTHFR C677T-A1298C. Breast cancer individuals with the TTAC genotype may be more sensitive to the genotoxic effects of FA deficiency than controls.

Assessment of Rice Cultivation in Rural Areas from E3 (Energy, Environment, and Economy) Perspectives (E3(Energy, Environment, and Economy)관점에서의 농촌 바이오매스 평가 - 벼 재배를 중심으로 -)

  • Lee, Jimin;Kim, Taegon;Suh, Kyo
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Population growth and increasing consumption of resources in the process of the industrial development has caused environmental pollution, climate change, and resource exhaustion. Therefore 'sustainable development' has become the important issue for the future. The sustainable development aims at effective resource use, less environmental impacts, and higher social security. Generally the rural area including agricultural fields and forest has various and plentiful natural resources which could make future development sustainable. To develop potential rural resources, the values for energy, environment and economy should be assessed considering the life-cycle of resources. The purposes of this study are to suggest the E3 (Energy, Environment, and Economy) assessment model for rural biomass considering life-cycle of resource and to apply the model to rice, the major agricultural product. As the results of this study, it turned out through E3 assessment that economic gain of rice cultivation is 578,374 won/10a, carbon absorption is $1,530kgCO_2/10a$, carbon emission is $926.65kgCO_2/10a$, and bio-energy potential of by-product is 394,028 kcal/10a. When E3 assessment was applied to by province, the results varied by regions because of the amount of input during cultivation. These results would be useful to realize the rural biomass and design regional resources plan in integrated E3 perspective.

Recovery of Sustainable Renewable Energy from Marine Biomass

  • Gurung, Anup;Oh, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.156-161
    • /
    • 2012
  • Marine biomass is considered an important substrate for anaerobic digestion to recovery energy i.e. methane. Nevertheless, marine biomass has attracted little attention by researchers compared to terrestrial feedstock for anaerobic digestion. In this study, biochemical methane potential (BMP) test was used to evaluate generation of renewable energy from starfish. A cumulative biogas yield of $748{\pm}67mL\;g^{-1}VS^{-1}$ was obtained after 60 days of digestion. The cumulative methane yield of $486{\pm}28mL\;CH_4\;g^{-1}VS^{-1}$ was obtained after 60 days of digestion. The methane content of the biogas was approximately 70%. The calculated data applying the modified Gompertz equation for the cumulative $CH_4$ production showed good correlation with the experimental result obtained from this batch study. Since the result obtained from this study is comparable to results with other substrates, marine biomass can be co-digested with food waste or swine wastewater to produce $CH_4$ gas that will help to reduce the gap in global energy demand.

Seaweed Biomass Resources in Korea (한국의 해조류 바이오매스자원 현황)

  • Lee, Shin-Youb;Ahn, Jae-Woo;Hwang, Hyeong-Jin;Lee, Sun-Bok
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.267-276
    • /
    • 2011
  • There is a growing worldwide interest in the potential of marine biomass as an environmentally friendly and economically sustainable resource. Due to the great lack of comprehensive information about domestic seaweed resources, this study aimed to analyze the existing literature on the production and types of domestic seaweed species. Based on this data the possibilities of industrial use of domestic seaweed for the production of biofuels and bioplastics had been assessed. Our review took into account the seaweed species on domestic coasts as well as the species currently in great production via seaweed farming. Due to their wide distribution, their status as farmed crops, and the likelihood of securing their reliable supply, Codium fragile, Hizikia fuciformis, and Gelidium amansii were deemed to be the most appropriate candidates for domestic industrial use. The industrial potential of seaweed biomass was also explored by comparing the predicted amount of biomass necessary to replace current gasoline and plastics use with currently available farming space. The results of our study imply that once a steady and adequate supply of the proper kinds of seaweed can be secured through seaweed farming, there is a great potential for the development of new seaweed-based biofuels and bioplastics industries in Korea.

Biomass and Carbon Storage Pattern in Natural and Plantation Forest Ecosystem of Chhattisgarh, India

  • Jhariya, Manoj Kumar;Yadav, Dhiraj Kumar
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • We studied natural and plantation forest ecosystem of Sarguja in Chhattisgarh, India in order to understand how vegetation biomass, carbon stock and its allocation patterns vary among the sites. For this, stratified random sampling was opted to measure the different layers of vegetation. Wide floral diversity was found in the natural forest site as compared to the teak stand. Overall, 17 tree species found in natural forest comprising 8 families while in the teak stand 6 species were recorded. In understory strata 23 species were recorded (18 herbs and 5 shrubs) in natural forest whereas in teak stand 20 herb species and 3 shrubs were found. Great variation was also seen in the population dynamics of the different vegetation stratum in concerned sites. The sapling, seedling and herb density was found to be highest in natural stand while tree and shrub density was more in teak stand. Results indicated that stand biomass of the natural site was $321.19t\;ha^{-1}$ while in the teak stand it was $276.61t\;ha^{-1}$. The total biomass of tree layer in plantation site was $245.22t\;ha^{-1}$ and natural forest $241.44t\;ha^{-1}$. The sapling, seedling, shrub and forest floor biomass was found highest under natural forest as compared to the teak plantation site. Carbon stock has similar trend as that of biomass accumulation in natural forest and teak stand. Higher biomass accumulation and carbon stock were recorded in the higher girth class gradation of the population structure. Proper efforts are required to manage these diverse ecosystems to obtain higher biomass and sustainable ecological services.