• Title/Summary/Keyword: suspended sediment load

Search Result 63, Processing Time 0.022 seconds

Prediction of total sediment load: A case study of Wadi Arbaat in eastern Sudan

  • Aldrees, Ali;Bakheit, Abubakr Taha;Assilzadeh, Hamid
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.781-796
    • /
    • 2020
  • Prediction of total sediment load is essential in an extensive range of problems such as the design of the dead volume of dams, design of stable channels, sediment transport in the rivers, calculation of bridge piers degradation, prediction of sand and gravel mining effects on river-bed equilibrium, determination of the environmental impacts and dredging necessities. This paper is aimed to investigate and predict the total sediment load of the Wadi Arbaat in Eastern Sudan. The study was estimated the sediment load by separate total sediment load into bedload and Suspended Load (SL), independently. Although the sediment records are not sufficient to construct the discharge-sediment yield relationship and Sediment Rating Curve (SRC), the total sediment loads were predicted based on the discharge and Suspended Sediment Concentration (SSC). The turbidity data NTU in water quality has been used for prediction of the SSC in the estimation of suspended Sediment Yield (SY) transport of Wadi Arbaat. The sediment curves can be used for the estimation of the suspended SYs from the watershed area. The amount of information available for Khor Arbaat case study on sediment is poor data. However, the total sediment load is essential for the optimal control of the sediment transport on Khor Arbaat sediment and the protection of the dams on the upper gate area. The results show that the proposed model is found to be considered adequate to predict the total sediment load.

A Study on Sediment Load in the Milyang River (유사량 산정에 관한 연구 (밀양강을 중심으로))

  • 안세영;민벙형
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.4
    • /
    • pp.96-107
    • /
    • 1980
  • This study is carried out to estimate the rate of sediment transportation both to measure the amount of suspended and bedload sediment that moves on or near the river bed and passes through the cross section of a river in unit time, with suspended and bed load samplers used for the Milyang river and to determine the most satisfactory and convenient formula of some formulas for sediment discharge by comparing the measured rate with the calculated rate. The results of this study are summarized as follows; 1) The interrelationship (1) between the total discharge and the total sediment discharge (2) between discharge and suspended sediment load and (3) between discharge and bed load in the Milyang river are (1) i) 4$\leq$Q$\leq$100 C.M.S. Qr=0. 00272 Q0.70 (kg/sec) ii) 150$\leq$Q$\leq$800 C.M.S. Qr=0. 4807 Q0.46 (kg/sec) (2) Qs~=0. 07576 Q1.02 (kg/sec) (3) QB=0. 00957 Q0.44 (kg/sec) 2) The rate of suspended sediment load to total sediment discharge is found to be about; 99%. The suspended load is shown to be almost wash load which consists of silt and clay. 3) The relation between the total discharge and the suspended sediment load that are measured at three medium and small rivers in Korea is Qs=0. 13831 Q0.97 (kg/sec) 4) Brown's formula is determined to be the most convenient formula for application and comparison with observed data obtained for the Milyang river.

  • PDF

Effect of the Forest Road on Suspended Sediment Yield in the Small Forest Watershed (산지(山地) 소유역(小流域)에 개설(開設)된 임도(林道)가 부유사(浮遊砂) 유출(流出)에 미치는 영향(影響))

  • Oh, Jae-Man;Inoue, Shoji;Ezaki, Tsugio;Chun, Kun-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.4
    • /
    • pp.477-484
    • /
    • 1999
  • This study was conducted to investigate the effect of forest road on the suspended sediment yield into a stream in the small forest watershed. The samples of suspended sediment yield were collected at surveying points A and B in mountains watersheds unaffected by forest road, and at surveying point C affected by forest road. When hourly change of suspended sediment concentration was investigated, it showed the highest increase along the forest road, and the peak of suspended sediment concentration due to the watershed characteristics of each surveying point occurred before or at the same time with, the peak of discharge. This may be due to the time lag in which stagnated unstable suspended sediment moved strongly upon rainfall. Although suspended sediment load varied depending upon rainfall factors and surveying period, suspended sediment load per unit watershed flowed out 4.1 times more at the point C than at the point A and B. The suspended sediment load on 18~19 September, 1998, strongly affected by rainfall factors, was 4.179g/sec/㏊ at the point C, and 0.343g/sec/㏊ and 0.147g/sec/㏊ at the point A and B, respectively. This load was 12 times higher at the point C than at the point A and 28 times higher than at the point B.

  • PDF

Research on the Sediment Characteristics in Change Structural Shape of Agricultural Irrigation (농업용수로 구조적 형상 변화에 따른 퇴적 특성 연구)

  • Park, Jung Koo;Kim, Myeong Hwan;Song, Chang Seob
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.69-77
    • /
    • 2015
  • The objective of this study was to evaluate the performance of selected sediment reduction methods to reduce sediment discharges from drain and irrigation of different types (concrete canals, soil canals). This study was carried out to analysis for the suspended sediment concentration and sediment of drain and irrigation by velocity of flow. The results of study were analysised and summerized as follow. Sedimentation characteristics and size of soil sediment from the concrete and soil canals of downstream smaller than upstream. Suspended sediment concentration and flow times from the suggestion canals bigger than open canal. Structural shape of the canal decreases the velocity of flow also affects the suspended sediment concentration and flow times.

Ratio of Bedload to Total Sediment Load in Gravel-bed Rivers (자갈하천 총유사량에 대한 소류사의 비율)

  • Park, Sang Doeg
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.2
    • /
    • pp.15-29
    • /
    • 2018
  • The sediment transport process in a river reflects the process of geomorphological change in the watershed, influencesthe river bed variation and the river channel migration, and is a parametric phenomenon that exhibits a dynamic self-adjusting process. Sediment load is divided into bedload and suspended load depending on the dominant mechanism. Quantitative sediment load is important information for solving river problems. Because it is difficult and time consuming to measure bedload, compared to that ofsuspended load, data on the sediment transport load and the research required for the gravel-bed rivers are insufficient. This study is to analyze the ratio of the bedload to the total sediment load in gravel-bed rivers. The sediment load ratio in gravel-bed rivers increases with the flow rate per unit width, and the rate of the bedload varies more rapidly than the suspended load. The sediment transport efficiency coefficient has been affected by the ratio of the flow depth to the mean diameter of particles and has been dependent on the shear velocity Reynolds number. So $A^{\ast}$ and $B^{\ast}$ are introduced to compensate for the uncertainties such as bed materials, sediment transport, and flow velocity distribution, and the coefficient of bedload ratio has been presented. For the sediment load data in experimental channels and rivers, A* was 3.1. The dominant variables of $B^{\ast}$ were $u_*d_m/{\nu}$ in the gravel-bed and h/dm in the sand-bed. When $B^{\ast}$ the is the same, in the experimental channels the coefficient of bedload ratio was affected by the bed forms, but in the rivers it was of little difference between the gravel-bed and sand-bed.

A Study on the Topography Change of Hyeya River and Jinha Beach (회야강 하구 및 진하해수욕장의 지형변화에 관한 연구)

  • 민병형;민일규;이동수
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.84-95
    • /
    • 1994
  • In recent years Jin-Beach and Hyeya River mouth have experienced severe erosion phenomena. The cause of erosion is examined using a 3-dimensional nunumerical sediment transport model. The model is composed of three components : wave model, wave-induced current model and 3-dimensional sediment transport model. In the wave analysis component we consider refraction, diffraction and reflection based on Maruyama and Kajima method. For the wave-induced current model we use depth-integrated continuty equation and momentum equations. For the 3-dimensional sediment transport model we consider bed load and suspended load simutaneously. Model results obtained for Jin-ha Beach and Hyeya River mouth agreed well with experimental results.

  • PDF

Sediment Discharge Based on a Time-Integrated Point Sample (연속점 채취를 이용한 유사량 계산)

  • 정관수
    • Water for future
    • /
    • v.29 no.2
    • /
    • pp.129-141
    • /
    • 1996
  • A procedure for computing total suspended sediment load is presented based on a single point-integrated sample, a power velocity distribution, and Laursen's sediment concentration distribution equation. The procedure was tested with field data from the Rio Grande River. Computed concentrations agreed well with depth-integrated measurements corrected for unmeasured load using nominal values of $\beta$, $\kappa$ and w. Even better agreement was obtained when site-specific data were used to define the x and z exponents of the velocity and concentration distributions. The difference between total suspended load computed using a single measurement and this procedure and conventional computations based on depthintegrated measurements is well within sampling error. There are major advantages in estimating total suspended load using a single time-integrated suspended-sediment point sample. Less field time is required; sampling costs are greatly reduced; and sampling can be more frequent and better timed to measure the changing sediment load. Single-point sampling makes automatic sampling procedures more feasible.

  • PDF

Enhanced vertical diffusion coefficient at upper layer of suspended sediment concentration profile

  • Kim, Hyoseob;Jang, Changhwan;Lhm, Namjae
    • Ocean Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.289-295
    • /
    • 2012
  • Assume fluid eddy viscosity in the vertical direction is parabolic. Sediment particles diffuse with the given fluid eddy viscosity. However, when the vertical diffusion coefficient profile is computed from the suspended sediment concentration profile, the coefficient shows lager values than the fluid mixing coefficient values. This trend was explained by using two sizes of sediment particles. When fine sediment particles like wash load are added in water column the sediment mixing coefficient looks much larger than the fluid mixing coefficient.

A Bed Level Change Model(SED-FLUX) by Suspended Sediment Flux and Bed Load Flux in Wave-Current Co-existing Fields (파-흐름 공존장에서 부유사와 소류사 flux에 의한 지형변화모델)

  • Lee, Jong Sup;Yoon, Eun Chan;Park, Seok Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.311-319
    • /
    • 2006
  • A bed level change model(SED-FLUX) is introduced based on the realistic sediment transport process including bed load and suspended load behaviours at the bottom boundary layer. The model SED-FLUX includes wave module, hydrodynamic module and sediment transport and diffusion module that calculate suspended sediment concentration, net sediment erosion flux($Q_s$) and bed load flux. Bed load transport rate is evaluated by the van Rijn's TRANSPOR program which has been verified in wave-current fields. The net sediment erosion flux($Q_s$) at the bottom is evaluated as a source/sink term in the numerical sediment diffusion model where the suspended sediment concentration becomes a verification parameter of the $Q_s$. Bed level change module calculates a bed level change amount(${\Delta}h_{i,j}$) and updates a bed level. For the model verification the limit depth of the bed load transport is compared with the field experiment data and some formula on the threshold depth for the bed load movement by waves and currents. This model is applied to the beach profile changes by waves, then the model shows a clear erosion and accumulation profile according to the incident wave characteristics. Finally the beach evolution by waves and wave-induced currents behind the offshore breakwater is calculated, where the model shows a tombolo formation in the landward area of the breakwater.

The Analysis of Suspended Sediment Load of Donghyang and Cheoncheon Basin using GIS-based SWAT Model (GIS 기반 SWAT 모델을 이용한 동향·천천유역의 부유사량 분석)

  • Lee, Geun-Sang;Kim, Yu-Ri;Ye, Lyeong;Lee, Eul-Rae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.2
    • /
    • pp.82-98
    • /
    • 2009
  • This study applied SWAT model to analyze suspended sediment load that is influence on the high density turbid water in Donghyang and Cheoncheon basin, which are located in the upstream of Yongdam Dam. GIS data such as DEM, land cover map and soil map, and meteorological data were used as the input data of SWAT model. And the rating curve equation and Q-SS equation of Donghyang and Cheoncheon gauge station were applied as the measured values of them. As the result of flowout, the coefficient of determination ($R^2$) and the Nash-Sutcliffe coefficient of efficiency (EI) of model calibration showed high as 0.87 and 0.87 at Donghyang gauge station, and the $R^2$ and EI of model validation were high as 0.95 at Cheoncheon gauge station. Also, as the result of suspended sediment load, the $R^2$ and EI of model calibration were high as 0.77 and 0.76 at Donghyang gauge station, and the $R^2$ and EI of model validation marked high as 0.867 and 0.80 at Cheoncheon gauge station. It is considered that the suspended sediment load of 2003 showed the highest due to rainfall amounts and rainfall intensity in using SWAT model. The results of suspended sediment modeled in this study can be applied to the decision-making support data for the evaluation of soil erosion possibility and turbid water potential in the management of reservoir.

  • PDF