• Title/Summary/Keyword: survivin promoter

Search Result 5, Processing Time 0.017 seconds

Survivin, a Promising Gene for Targeted Cancer Treatment

  • Shamsabadi, Fatemeh T;Eidgahi, Mohammad Reza Akbari;Mehrbod, Parvaneh;Daneshvar, Nasibeh;Allaudin, Zeenathul Nazariah;Yamchi, Ahad;Shahbazi, Majid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.3711-3719
    • /
    • 2016
  • Drawbacks of conventional cancer treatments, with lack of specificity and cytotoxicity using current approaches, underlies the necessity for development of a novel approach, gene-directed cancer therapy. This has provided novel technological opportunities in vitro and in vivo. This review focuses on a member of an apoptosis inhibitor family, survivin, as a valuable target. Not only the gene but also its promoter are applicable in this context. This article is based on a literature survey, with especial attention to RNA interference as well as tumor-specific promoter action. The search engine and databases utilized were Science direct, PubMed, MEDLINE and Google. In addition to cell-cycle modulation, apoptosis inhibition, interaction in cell-signaling pathways, cancer-selective expression, survivin also may be considered as specific target through its promoter as a novel treatment for cancer. Our purpose in writing this article was to create awareness in researchers, emphasizing relation of survivin gene expression to potential cancer treatment. The principal result and major conclusion of this manuscript are that survivin structure, biological functions and applications of RNA interference systems as well as tumor-specific promoter activity are of major interest for cancer gene therapy.

Adenovirus-mediated Double Suicide Gene Selectively Kills Gastric Cancer Cells

  • Luo, Xian-Run;Li, Jian-Sheng;Niu, Ying;Miao, Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.781-784
    • /
    • 2012
  • The aim of this study was to evaluate the effect of the adenovirus-mediated double suicide gene (CD/TK) for selective killing of gastric cancer cells. Gastric cancer cells SCG7901 and normal gastric epithelial cell lines were infected by adenoviruses Ad-survivin/GFP and Ad-survivin/CD/TK. GFP expression and CD-TK were detected by fluorescence microscopy and reverse transcriptase polymerase chain reaction (RT-PCR), respectively. After treatment of the infected cells with the pro-drugs ganciclovir (GCV) and/or 5-FC, the cell growth status was evaluated by methyl thiazolyl tetrazolium assay. Cell cycle changes were detected using flow cytometry. In nude mice bearing human gastric cancer, the recombinant adenovirus vector was injected directly into the tumor followed by an intraperitoneal injection of GCV and/or 5-FC. The subsequent tumor growth was then observed. The GFP gene driven by survivin could be expressed within the gastric cancer line SCG7901, but not in normal gastric epithelial cells. RT-PCR demonstrated the presence of the CD/TK gene product in the infected SCG7901 cells, but not in the infected normal gastric epithelial cells. The infected gastric cancer SCG7901, but not the gastric cells, was highly sensitive to the pro-drugs. The CD/TK fusion gene system showed significantly greater efficiency than either of the single suicide genes in killing the target cells (P<0.01). Treatment of the infected cells with the pro-drugs resulted in increased cell percentage in G0-Gl phase and decreased percentage in S phase. In nude mice bearing SCG7901 cells, treatment with the double suicide gene system significantly inhibited tumor growth, showing much stronger effects than either of the single suicide genes (P<0.01). The adenovirus-mediated CD/TK double suicide gene driven by survivin promoter combined with GCV an 5-FC treatment could be an effective therapy against experimental gastric cancer with much greater efficacy than the single suicide gene CD/TK combined with GCV or 5-FC.

A Cancer-specific Promoter for Gene Therapy of Lung Cancer, Protein Regulator of Cytokinesis 1 (PRC1) (폐암의 유전자 치료법을 위한 암특이적인 PRC1 프로모터)

  • Cho, Young-Hwa;Yun, Hye-Jin;Kwon, Hee-Chung;Kim, Hee-Jong;Cho, Sung-Ha;Kang, Bong-Su;Kim, Yeun-Ju;Seol, Won-Gi;Park, Kee-Rang
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1395-1399
    • /
    • 2008
  • We have recently reported the PRC1 promoter as a promoter candidate to control expression of transcriptionally targeted genes for breast cancer gene therapy. We tested whether the PRC1 promoter could be also applied for the lung cancer gene therapy. In the transient transfection assay with naked plasmids containing the luciferase fused to the PRC1 promoter, the promoter showed little activity in the normal lung cell line, MRC5. However, in the lung cancer A549 cells, PRC1 showed approximately 30-fold activation which was similar to the survivin promoter, the gene whose promoter has been already reportedas a candidate for the gene therapy of lung cancer. In viral systems, the PRC1 promoter showed approximately 75% and 66% of transcriptional activity compared to the CMV promoter in the adeno-associated virus (AAV) and the adenovirus (AV) systems, respectively. However, the PRC1 promoter in either AAV or AV showed approximately 20% activity compared to the CMV promoter in the normal lung cells. In addition, human lung tumor xenograft mice showed that the PRC1 promoter activity was as strong as the CMV activity in vivo. Taken together, these results suggested that PRC1 might be a potential promoter candidate for transcriptionally targeted lung cancer gene therapy.

RUNX1-Survivin Axis Is a Novel Therapeutic Target for Malignant Rhabdoid Tumors

  • Masamitsu, Mikami;Tatsuya, Masuda;Takuya, Kanatani;Mina, Noura;Katsutsugu, Umeda;Hidefumi, Hiramatsu;Hirohito, Kubota;Tomoo, Daifu;Atsushi, Iwai;Etsuko Yamamoto, Hattori;Kana, Furuichi;Saho, Takasaki;Sunao, Tanaka;Yasuzumi, Matsui;Hidemasa, Matsuo;Masahiro, Hirata;Tatsuki R., Kataoka;Tatsutoshi, Nakahata;Yasumichi, Kuwahara;Tomoko, Iehara;Hajime, Hosoi;Yoichi, Imai;Junko, Takita;Hiroshi, Sugiyama;Souichi, Adachi;Yasuhiko, Kamikubo
    • Molecules and Cells
    • /
    • v.45 no.12
    • /
    • pp.886-895
    • /
    • 2022
  • Malignant rhabdoid tumor (MRT) is a highly aggressive pediatric malignancy with no effective therapy. Therefore, it is necessary to identify a target for the development of novel molecule-targeting therapeutic agents. In this study, we report the importance of the runt-related transcription factor 1 (RUNX1) and RUNX1-Baculoviral IAP (inhibitor of apoptosis) Repeat-Containing 5 (BIRC5/survivin) axis in the proliferation of MRT cells, as it can be used as an ideal target for anti-tumor strategies. The mechanism of this reaction can be explained by the interaction of RUNX1 with the RUNX1-binding DNA sequence located in the survivin promoter and its positive regulation. Specific knockdown of RUNX1 led to decreased expression of survivin, which subsequently suppressed the proliferation of MRT cells in vitro and in vivo. We also found that our novel RUNX inhibitor, Chb-M, which switches off RUNX1 using alkylating agent-conjugated pyrrole-imidazole polyamides designed to specifically bind to consensus RUNX-binding sequences (5'-TGTGGT-3'), inhibited survivin expression in vivo. Taken together, we identified a novel interaction between RUNX1 and survivin in MRT. Therefore the negative regulation of RUNX1 activity may be a novel strategy for MRT treatment.

Lack of Association of BIRC5 Polymorphisms with Clearance of HBV Infection and HCC Occurrence in a Korean Population

  • Lee, Jin-Sol;Kim, Jeong-Hyun;Park, Byung-Lae;Cheong, Hyun-Sub;Kim, Jason-Y.;Park, Tae-Joon;Chun, Ji-Yong;Bae, Joon-Seol;Lee, Hyo-Suk;Kim, Yoon-Jun;Shin, Hyoung-Doo
    • Genomics & Informatics
    • /
    • v.7 no.4
    • /
    • pp.195-202
    • /
    • 2009
  • BIRC5 (Survivin) belongs to the inhibitor of apoptosis gene family. The BIRC5 protein inhibits caspases and consequently blocks apoptosis. Thus, BIRC5 contributes to the progression of cancer allowing for continued cell proliferation and survival. In this study, we identified eight sequence variants of BIRC5 through direct DNA sequencing. Among the eight single nucleotide polymorphisms (SNPs), six common variants with frequencies higher than 0.05 were selected for larger-scale genotyping (n=1,066). Results of the study did not show any association between the promoter region polymorphisms and the clearance of hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC) occurrence. This is in line with a previous study in which polymorphisms in the promoter region does not influence the function of BIRC5. Initially, we were able to detect a signal with the +9194A>G, which disappeared after multiple corrections but led to a change in amino acid. Similarly, we were also able to detect an association signal between two haplotypes (haplotype-2 and haplotype-5) on the onset age of HCC and/or HCC occurrence, but the signals also disappeared after multiple corrections. As a result, we concluded that there was no association between BIRC5 polymorphisms and the clearance HBV infection and/or HCC occurrence. However, our results might useful to future studies.