• 제목/요약/키워드: surveillance video

검색결과 490건 처리시간 0.032초

Viewpoint Invariant Person Re-Identification for Global Multi-Object Tracking with Non-Overlapping Cameras

  • Gwak, Jeonghwan;Park, Geunpyo;Jeon, Moongu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권4호
    • /
    • pp.2075-2092
    • /
    • 2017
  • Person re-identification is to match pedestrians observed from non-overlapping camera views. It has important applications in video surveillance such as person retrieval, person tracking, and activity analysis. However, it is a very challenging problem due to illumination, pose and viewpoint variations between non-overlapping camera views. In this work, we propose a viewpoint invariant method for matching pedestrian images using orientation of pedestrian. First, the proposed method divides a pedestrian image into patches and assigns angle to a patch using the orientation of the pedestrian under the assumption that a person body has the cylindrical shape. The difference between angles are then used to compute the similarity between patches. We applied the proposed method to real-time global multi-object tracking across multiple disjoint cameras with non-overlapping field of views. Re-identification algorithm makes global trajectories by connecting local trajectories obtained by different local trackers. The effectiveness of the viewpoint invariant method for person re-identification was validated on the VIPeR dataset. In addition, we demonstrated the effectiveness of the proposed approach for the inter-camera multiple object tracking on the MCT dataset with ground truth data for local tracking.

Gastric Adenocarcinoma with Thymic Metastasis after Curative Resection: A Case Report

  • Matsunaga, Tomoyuki;Saito, Hiroaki;Miyatani, Kozo;Takaya, Seigo;Fukumoto, Yoji;Osaki, Tomohiro;Ikeguchi, Masahide
    • Journal of Gastric Cancer
    • /
    • 제14권3호
    • /
    • pp.207-210
    • /
    • 2014
  • The peritoneum is the most frequent site of recurrence for gastric cancer after gastrectomy, followed by the liver and lymph nodes. In contrast, metastasis to the thymus is rare. Annual surveillance with computed tomography was performed on a 67-year-old man who previously underwent a distal gastrectomy and D2 lymph node dissection for gastric cancer at Tottori University. Five years after the initial operation, an anterior mediastinal tumor was detected by computed tomography. The patient underwent video-assisted thoracic surgery to remove the tumor. Histopathology revealed adenocarcinoma cells similar to those of the gastric cancer resected 5 years previously. Thymic metastasis was considered likely based on the location of the tumor. The recognition that gastric cancer can metastasize to unusual anatomic locations, such as the thymus, can facilitate an accurate, prompt diagnosis and appropriate treatment.

동적인 배경에서의 사람 검출 알고리즘 (People Detection Algorithm in Dynamic Background)

  • 최유정;이동렬;김윤
    • 산업기술연구
    • /
    • 제38권1호
    • /
    • pp.41-52
    • /
    • 2018
  • Recently, object detection is a critical function for any system that uses computer vision and is widely used in various fields such as video surveillance and self-driving cars. However, the conventional methods can not detect the objects clearly because of the dynamic background change in the beach. In this paper, we propose a new technique to detect humans correctly in the dynamic videos like shores. A new background modeling method that combines spatial GMM (Gaussian Mixture Model) and temporal GMM is proposed to make more correct background image. Also, the proposed method improve the accuracy of people detection by using SVM (Support Vector Machine) to classify people from the objects and KCF (Kernelized Correlation Filter) Tracker to track people continuously in the complicated environment. The experimental result shows that our method can work well for detection and tracking of objects in videos containing dynamic factors and situations.

On the Performance of Cuckoo Search and Bat Algorithms Based Instance Selection Techniques for SVM Speed Optimization with Application to e-Fraud Detection

  • AKINYELU, Andronicus Ayobami;ADEWUMI, Aderemi Oluyinka
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권3호
    • /
    • pp.1348-1375
    • /
    • 2018
  • Support Vector Machine (SVM) is a well-known machine learning classification algorithm, which has been widely applied to many data mining problems, with good accuracy. However, SVM classification speed decreases with increase in dataset size. Some applications, like video surveillance and intrusion detection, requires a classifier to be trained very quickly, and on large datasets. Hence, this paper introduces two filter-based instance selection techniques for optimizing SVM training speed. Fast classification is often achieved at the expense of classification accuracy, and some applications, such as phishing and spam email classifiers, are very sensitive to slight drop in classification accuracy. Hence, this paper also introduces two wrapper-based instance selection techniques for improving SVM predictive accuracy and training speed. The wrapper and filter based techniques are inspired by Cuckoo Search Algorithm and Bat Algorithm. The proposed techniques are validated on three popular e-fraud types: credit card fraud, spam email and phishing email. In addition, the proposed techniques are validated on 20 other datasets provided by UCI data repository. Moreover, statistical analysis is performed and experimental results reveals that the filter-based and wrapper-based techniques significantly improved SVM classification speed. Also, results reveal that the wrapper-based techniques improved SVM predictive accuracy in most cases.

빠른 스티칭 알고리즘과 왜곡현상을 해소하는 큐브 파노라마 영상 (Fast Stitching Algorithm and Cubic Panoramic Image Reducing Distortions)

  • 김응곤;서승완
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2005년도 추계 종합학술대회 논문집
    • /
    • pp.580-584
    • /
    • 2005
  • 기존의 파노라마 영상 스티칭 기술의 문제점은 계산량이 매우 많아 필요한 이미지 처리가 실시간에 이루어 질 수 없다는 점이다. 비디오 감시와 같은 응용분야에서 실시간 성능은 현재의 상황을 보아야 하므로 매우 중요한 문제이다. 그러나 기존의 방법으로 일련의 이미지들을 파노라마 영상으로 스티칭하기 위해서 이미지들 사이의 변환계수만을 계산하는데 많은 시간이 소요된다. Apple QuickTime VR을 포함한 대부분의 파노라마 가상현실 관련 기술들은 표현에 있어서 제작 기술의 제한된 상황으로 Top과 Bottom의 표현이 왜곡되는 문제점을 안고 있다. 따라서 본 논문에서는 스티칭을 고속화시키고, 좌우는 물론 상하전후의 관측 범위를 가지며 Top과 Bottom에 대한 왜곡현상을 줄이는 큐브 파노라마 영상을 지원하는 파노라마 영상의 제작기술을 제안한다.

  • PDF

컬러이미지에서의 얼굴검출 (Face Detection in Color images)

  • 박동희;박호식;남기환;한준희;나상동;배철수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 추계종합학술대회
    • /
    • pp.236-238
    • /
    • 2003
  • 인간의 얼굴 검출은 비디오 감시, 휴먼 컴퓨터 인터페이스, 얼굴 인식, 그리고 얼굴 이미지 데이터 베이스 관리와 같은 분야에 중요한 역할을 한다. 본 논문에서는 복잡한 배경뿐만 아니라 다양한 조명 조건에서 색 이미지 변화들의 폭넓은 변화를 처리할 수 있도록 새로운 조명 보정 기술과 이웃 화소들을 조합한 간단하고 빠른 얼굴 검출 방법을 제안한다. 색상 유사도를 기반으로 각 그룹을 추출하여 후보 얼굴 영역을 생성한다. 각각의 얼굴 후보 영역을 증명하기 위하여 눈, 입의 경계맵을 구성한다. 본 논문에서 제안한 방법이 단순하고 매우 빠른 수행능력을 보여주었으며, 89%의 얼굴 검출 수행능력을 나타내었다.

  • PDF

영상처리를 이용한 과속단속 알고리즘 연구 (A study on automated speed enforcement system algorithm for using image processing)

  • 박건영;전민호;오창헌
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 춘계학술대회
    • /
    • pp.833-836
    • /
    • 2013
  • 본 논문에서는 지속적으로 수집하는 영상장치의 영상을 이용하여 차량의 과속을 판별할 수 있는 지능형 단속시스템을 제안한다. 영상장비는 지속적으로 영상을 포착하게 되며, 수집된 전 후 영상을 비교하여 자연적, 장거리의 물체이동 등으로 발생하는 영상오류를 필터링하게 된다. 사물의 크기를 측정하여 픽셀처리를 이용하여 픽셀이 커지는 량에 따라 차량의 속도를 측정할 수 있음을 증명한다.

  • PDF

Baggage Recognition in Occluded Environment using Boosting Technique

  • Khanam, Tahmina;Deb, Kaushik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권11호
    • /
    • pp.5436-5458
    • /
    • 2017
  • Automatic Video Surveillance System (AVSS) has become important to computer vision researchers as crime has increased in the twenty-first century. As a new branch of AVSS, baggage detection has a wide area of security applications. Some of them are, detecting baggage in baggage restricted super shop, detecting unclaimed baggage in public space etc. However, in this paper, a detection & classification framework of baggage is proposed. Initially, background subtraction is performed instead of sliding window approach to speed up the system and HSI model is used to deal with different illumination conditions. Then, a model is introduced to overcome shadow effect. Then, occlusion of objects is detected using proposed mirroring algorithm to track individual objects. Extraction of rotational signal descriptor (SP-RSD-HOG) with support plane from Region of Interest (ROI) add rotation invariance nature in HOG. Finally, dynamic human body parameter setting approach enables the system to detect & classify single or multiple pieces of carried baggage even if some portions of human are absent. In baggage detection, a strong classifier is generated by boosting similarity measure based multi layer Support Vector Machine (SVM)s into HOG based SVM. This boosting technique has been used to deal with various texture patterns of baggage. Experimental results have discovered the system satisfactorily accurate and faster comparative to other alternatives.

SIFT의 descriptor를 위한 sin/cos 프로세서의 구현 (Implementation of sin/cos Processor for Descriptor on SIFT)

  • 김영진;이현수
    • 한국콘텐츠학회논문지
    • /
    • 제13권4호
    • /
    • pp.44-52
    • /
    • 2013
  • SIFT(Scale Invariant Feature Transform) 알고리즘은 현재 비디오 감시카메라, 자율 주행시스템 등과 같은 영상 시스템에서 많이 사용되고 있다. SIFT 알고리즘에서 연산량과 연산시간이 가장 많이 필요한 부분이 descriptor의 sin/cos 함수를 연산하는 부분이다. 그러므로 본 논문에서는 SIFT 알고리즘에 사용되는 descriptor를 위한 sin/cos 함수를 하드웨어로 구현하였다. Verilog-HDL 언어를 사용하여 FPGA로 구현하고 그 성능을 분석한다. Xilinx Spartan 2E(XC2S200E-PQ208-6) 를 사용하여 구현하였을때, 149 Slices에 233 LUTs가 소모되었으며, 최대 주파수는 60.01MHz로 동작하였다. 또한 descriptor에 적용하여 소프트웨어와 비교 하였을 때 40배 정도의 빠른 성능 향상을 얻었다.

유사한 색상을 지닌 다수의 이동 물체 영역 분류 및 식별과 추적 (Area Classification, Identification and Tracking for Multiple Moving Objects with the Similar Colors)

  • 이정식;주영훈
    • 전기학회논문지
    • /
    • 제65권3호
    • /
    • pp.477-486
    • /
    • 2016
  • This paper presents the area classification, identification, and tracking for multiple moving objects with the similar colors. To do this, first, we use the GMM(Gaussian Mixture Model)-based background modeling method to detect the moving objects. Second, we propose the use of the binary and morphology of image in order to eliminate the shadow and noise in case of detection of the moving object. Third, we recognize ROI(region of interest) of the moving object through labeling method. And, we propose the area classification method to remove the background from the detected moving objects and the novel method for identifying the classified moving area. Also, we propose the method for tracking the identified moving object using Kalman filter. To the end, we propose the effective tracking method when detecting the multiple objects with the similar colors. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.