• Title/Summary/Keyword: surplus Nielsen root number

Search Result 1, Processing Time 0.018 seconds

ESTIMATION OF THE NUMBER OF ROOTS ON THE COMPLEMENT

  • Yang Ki-Yeol
    • The Pure and Applied Mathematics
    • /
    • v.13 no.1 s.31
    • /
    • pp.11-18
    • /
    • 2006
  • Let f : (X, A) ${\rightarrow}$ (Y, B) be a map of pairs of compact polyhedra. A surplus Nielsen root number $SN(f;X\;{\backslash}\;A,\;c)$ is defined which is lower bound for the number of roots on X \ A for all maps in the homotopy class of f. It is shown that for many pairs this lower bound is the best possible one, as $SN(f;X\;{\backslash}\;A,\;c)$ can be realized without by-passing condition.

  • PDF