• Title/Summary/Keyword: surfactant micelles

Search Result 106, Processing Time 0.03 seconds

Mass Transfer of Lysozyme Extraction Using Reversed Micelles (역미셀을 이용한 Lysozyme 추출에 대한 물질 전달)

  • 전병수;김석규;윤성옥;송승구
    • KSBB Journal
    • /
    • v.16 no.3
    • /
    • pp.241-245
    • /
    • 2001
  • Mass transfer rates have been measured for the extraction of enzyme from aqueous solution into a reverse-micelle phase at $25^{\circ}C$. The 420 mL vessel was carefully designed to maintain a planar interface between the aqueous and solvent phases, so allowing precise measurement of interfacial area, has been investigated. Sodium di-2-ethylhexyl sulfosuccinate(AOT) was the surfactant used. Factors varied included: agitator speed, pH, ionic strength and surfactant concentration. Samples were taken from the solvent phase at 15min intervals, and the amount of enzyme extracted was measured by UV absorption at 280 nm. The observed Sherwood numbers for the aqueous phase $Sh_1$were correlated interms of the aqueous phase Reynolds number $Re_1$, and modified Schmidt number $Sc_1$. $Sh_1=0.664Re_1^{0.5}Sc_1^{0.33}$

  • PDF

Gel Type Formulation Utilizing Polymer-Surfactant Interaction (폴리머와 계면활성제의 상호작용을 이용한 젤타입 제형의 제조)

  • Kim, Dong-Joo;Kang, Tae-Jun;Lee, Cheon-Koo;Lee, Jung-No
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.1 s.60
    • /
    • pp.7-10
    • /
    • 2007
  • The interaction between polymers and surfactants was investigated by means of rheological and surface tension measurements. The polymers used in this study were acrylates/$C_{10-30}$ alkyl acrylate crosspolymer (AC) and ammonium acryloyldimethyltaurate/VP copolymer (AV). And the surfactants were PEG-40 hydrogenated castor oil (HC) and polysorbate 60 (P60). HC and P60 made the micelles intervening between AC polymers, resulting in the increase of viscosity. However, HC showed a similar behavior over the wider range of surfactant concentration than P60. Regarding of surface tensions in the same range of surfactant concentration, AC/HC solution showed the area of increasing surface tension with surfactant concentration in contrast to the AC/P60 solution showing no increasing area. It is assumed that the micelles between AC/HC were formed so cooperatively and strongly that the surfactants located at the surface originally moved to the micelles.

A Phenomenological Study on Micellization and Solubilization (Micelle 형성에 관한 현상학적 고찰)

  • Myung Soo Kim
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.459-467
    • /
    • 1989
  • When the sufactants are dissolved in water, they associate to form micelles and solubilize oil inside the micelle to form swollen micelles. Although spherical aggregates like micelles and swollen micelles occupy the same regions in the phase diagram of water-oil-surfactant systems, they are treated in different viewpoint for the formation of such aggregates. Hence a unified thermodynamic formalism for the formation of such structure is presented in this study. In all cases, the to ideal solution theory is applied for dilute system and the energy of formation is expressed as the sum of hydrophobic interaction energy and surface energy due to surfactant film. From the model, critical micelle concentration (CMC), average aggregation number, and solubilization ratio are predicted and compared with the known experimental observation.

  • PDF

Phase Behavior and Spontaneous Vesicle Formation in Aqueous Solutions of Anionic Ammonium Dodecyl Sulfate and Cationic Octadecyl Trimethyl Ammonium Chloride Surfactants

  • Kang, Kye-Hong;Kim, Hong-Un;Lim, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.667-674
    • /
    • 2007
  • Phase behavior for the mixed aqueous surfactant systems of cationic octadecyl trimethyl ammonium chloride (OTAC)/anionic ammonium dodecyl sulfate (ADS)/water was examined. Below the total surfactant concentrations of 1.5 m molal, mixed micelles were formed. At the total surfactant concentrations higher than 1.5 m molal, there appeared a region where mixed micelles and vesicles coexist. As the surfactant concentration increased, the systems looked very turbid and much more vesicles were observed. The vesicles were spontaneously formed in this system and their existence was observed by negative-staining transmission electron microscopy (TEM), small-angle neutron scattering (SANS) and encapsulation efficiency of dye. The vesicle region was where the molar fraction α of ADS to the total mixed surfactant was from 0.1 to 0.7 and the total surfactant concentration was above 5 × 10-4 molality. The size and structure of the vesicles were determined from the TEM microphotographs and the SANS data. Their diameter ranged from 450 nm to 120μm and decreased with increasing total surfactant concentration. The lamellar thickness also decreased from 15 nm to 5 nm with increasing surfactant concentration and this may be responsible for the decrease in vesicle size with the surfactant concentration. The stability of vesicles was examined by UV spectroscopy and zeta potentiometry. The vesicles displayed long-term stability, as UV absorbance spectra remained unchanged over two months. The zeta potentials of the vesicles were large in magnitude (40-70 mV) and the observed longterm stability of the vesicles may be attributed to such high ζ potentials.

Tyrosinase Reaction in AOT/Isooctane/Reverse Micelles (AOT/이소옥탄/역미셀계에서의 Tyrosinase 반응)

  • Han, Dae-Seok;Shin, Yu-Jung;Jung, Sung-Won;Song, Hyo-Nam
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.454-460
    • /
    • 2000
  • It is difficult to accurately evaluate the effect of lipophilic compounds in aqueous reaction system of enzymes because they are immiscible with water. To screen lipophilic inhibitors of tyrosinase which catalyzes the synthesis of melanin in vivo, an optically clear organic system composed of organic solvent, surfactant, and water, often called reverse micelles(RM), was introduced. Optimal RM to let tyrosinase act normally was composed of isooctane as an organic solvent and dioctyl sulfosuccinate(AOT) of 100 mM as a surfactant. When a molar ratio of water to surfactant was 15, tyrosinase(105.3 units) in RM showed a similar reactivity toward 3,4-dihydroxyphenylalanine(0.18 mM) as in the aqueous assay system. In the presence of cinnamic acid, the product formation of tyrosinase reaction was proportional to the reaction time. This indicates that the inhibitory effect of lipophilic compounds could be analyzed in RM.

  • PDF

The Effect of Water Content on Hen Egg lysozyme Extraction using Reversed Micelles and Pressurized Carbon Dioxide (가압 이산화탄소와 역미셀을 이용한 난백 lysozyme의 추출에 대한 수분함량의 영향)

  • 박선영;전병수
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.202-206
    • /
    • 2003
  • A study of hen egg lysozyme extraction using reversed micelles and pressurized CO₂ phase was conducted. The relationship between the lysozyme extraction and water content (W/sub 0/) under the pressurized CO₂ conditions was investigated. The water content of the micellar organic phase was a significant parameter affecting the mass transfer of protein and enzymatic activity in reversed micellar process. It was found that the reversed micelles in the organic phase with pressurized CO₂ were larger than the organic phase without CO₂. Therefore, the extractionrate of lysozyme in the interface of the aqueous phase and the organic phase was increased. W/sub 0/ value was increased at the high surfactant concentration and the extraction rate of lysozyme was enhanced.

Effect of n-Alkylamine Hydrochlorides on the Cloud Point of Nonionic Polyoxyethylated Surfactant

  • Han, Suk-Kyu;Kim, Young-Mi
    • YAKHAK HOEJI
    • /
    • v.20 no.3
    • /
    • pp.156-161
    • /
    • 1976
  • The salting in and salting out of Octoxynol, N.F., a nonionic polyoxyethylated surfactant by n-alkylamine hydrochlorides ws investigated by measuring their effect on the cloud point of the surfactant at various salt concentrations. The carbon number of the alkyl chain was varied from zero to twelve. Ammonium chloride, methylamine hydrochloride and ethylamine hydrochloride tended to salt out the surfactant, lowering its cloud point in proportion to the salt concentration. n-Ankylamine and n-butylamine hydrochlorides showed salting-out effect at low concentrations of the electrolyte, while their effects were leveled off and showed rather salting-in trend at higher concentrations of the electrolyte. These salting-in effect was ascribed to the formation of a hydrotropy of the n-alky lammonium cations with the surfactant. The higher homolog compounds of n-alkylamine hydrochlorides showed extraordinarily high salting-in effect at very low oncentrations of the electrolyte. These large salting-in effects were more drastic as the chain length was getting longer. These large increases of the cloud point of the surfactant were attributed to the formation of mixed micelles of n-alkylammonium cations with the polyoxyethylated surfactant.

  • PDF

Physical Characteristics of Anion(SDE)/Zwitterionic(TDB, ODB) Surfactants in Mixed Micelles (음이온(SED)/양쪽성(TDB, ODB) 계면활성제 혼합미셀의 물리화학적 특성)

  • Ahn, Beom-Shu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.238-245
    • /
    • 2004
  • The interaction between anion and zwitterionic surfactants was investigated by means of surface tension, NMR spectroscopy, and fluorescence studies. These systems are N-tetradecyloxymethyl-N,N-dimethyl betaine ($C_{14}$, TDB), N-octadecyloxymethyl-N,Ndimethyl betaine ($C_{18}$, ODB), and sodium dodecylethoxy sulfate (SDE). These systems show a composition dependency in micellar properties. When the molar fraction of TDB and ODB was about 0.6, the cmc values of these systems showed minima, whereas the solubilized amount of a water insoluble dye, NMR line width showed maxima. These changes comes from the intramolecular complexes formed in the mixed micelles. The complexes are due to the electrostatic interaction of oppositely charged head groups of betaine and sodium dodecylethoxy sulfate. A comparison of betaine and SDE alkyl methylene group line widths to those of n-methyl group indicates that the interior of the micelle in the restricted region is more immobile than the head group.

Solubilization Isotherms of Chlorobenzene in ionic Surfactant Solutions

  • Baek, Ki-Tae;Yang, Ji-Won
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.201-204
    • /
    • 2003
  • Solubilization isotherms of 1-chlorobenzene (MCB) and 1, 2-dichlorobenzene (DCB) were investigated in ionic surfactant solutions such as sodium dodecyl sulfate (SDS), cetylpyridinium chloride (CPC), and dedecyltrimethylammonium chloride (DMAC). The solubilization extent of DCB was much higher than that of MCB because of the main driving force of solubilization Is hydrophobic interactions between chlorobenzenes and hydrophobic interior of ionic micelles and DCB is more hydrophobic than MCB. CPC showed highest solubilization capacity because of longest hydrophobic tails. Simultaneous solubilization of MCB and DCB decreased slightly the extent solubilization of both MCB and DCB because the solubilization locus in the micelles is same.

  • PDF

Drag Reduction Characteristics of Surfactant by a Rotating Disk Apparatus (회전원판장치를 이용한 계면활성제의 마찰저항감소)

  • Kim, C.A.;Choi, H.J.;Yoon, H.K.;Park, S.Y.;Kim, J.Y.
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.149-154
    • /
    • 1998
  • The characteristics of drag reduction and rheological behaviors were investigated using cationic surfactants, whose microstructures are known to change when concentration of the surfactant exceeds CMC. The firstly formed spherical micelles change to rodlike or disklike micelles because of packing between surfactants micells, and of thermodynamic perference. The drag reduction becomes significant when the concentration increases over this micellar transient point. Drag reductions were measured as a function of concentration, and rheological characteristics of the surfactant were further investigated to understand the correlation between their rheological properties and drag reduction. Micelles show the non-Newtonian behavior, and shear thickening behaviors were observed due to the structural development. In addition, structural developments were determined by adding the counter-ion in case of DOBON-G.

  • PDF