가압 이산화탄소와 역미셀을 이용한 난백 lysozyme의 추출에 대한 수분함량의 영향

The Effect of Water Content on Hen Egg lysozyme Extraction using Reversed Micelles and Pressurized Carbon Dioxide

  • 박선영 (부경대학교 식품생명공학부) ;
  • 전병수 (부경대학교 식품생명공학부)
  • 발행 : 2003.06.01

초록

역미셀과 가압이산화탄소를 이용한 난백 lysozyme의 추출실험에서 일정한 압력의 이산화탄소를 유기용액에 가하였을 때 lysozyme의 추출율과 그 때 형성되는 역미셀의 크기, 즉 역미 셀 내부의 수분함량 ($W_{0}$)를 알아보았다. 이산화탄소로 가압된 상태에서도 수용액에서 유기용액으로의 lysozyme의 추출 경향은 실험조건인 수용액의 이온강도, pH, 유기용액의 계면활성제의 농도를 달리 하였을 때 기존의 다른 연구와 유사한 경향을 나타내었으며, 이산화탄소의 압력을 102 bar까지 증가시켰을 때 가장 높은 추출율을 나타내었다. 또한 이때 역미셀 내부의 수분함량 ($W_{0}$)을 측정한 결과, lysozyme의 추출율과 역미셀 내부의 수분함량은 비례함을 확인할 수 있었다.

A study of hen egg lysozyme extraction using reversed micelles and pressurized CO₂ phase was conducted. The relationship between the lysozyme extraction and water content (W/sub 0/) under the pressurized CO₂ conditions was investigated. The water content of the micellar organic phase was a significant parameter affecting the mass transfer of protein and enzymatic activity in reversed micellar process. It was found that the reversed micelles in the organic phase with pressurized CO₂ were larger than the organic phase without CO₂. Therefore, the extractionrate of lysozyme in the interface of the aqueous phase and the organic phase was increased. W/sub 0/ value was increased at the high surfactant concentration and the extraction rate of lysozyme was enhanced.

키워드

참고문헌

  1. Reverse micelles: Biological and technological relevance of amphiphilic structures in apolar meidia Luisu, P. L.;B. E. Straub
  2. Ind. Eng. Chem. Res. v.31 Activity and conformation of lysozyme in reversed micellar extraction Kinugasa, T.;K. Watanabe;H. Takeuchi https://doi.org/10.1021/ie00007a033
  3. Chem. Eng. Sci. v.49 Protein extraction using reverse micelles: kinetics of protein partitioning Lye, G. J.;J. A. Asenjo;D. L. Pyle https://doi.org/10.1016/0009-2509(94)00147-2
  4. J. Chem. Eng. Jpn. v.34 Interfacial properties between aqueous and organic phases in AOT reverse micellar system for lysozyme extraction Kazuhisa, O.;Y. Nishii;S. Nii;T. Kinugasa;K. Takahashi https://doi.org/10.1252/jcej.34.501
  5. J. Supercritical Fluid v.20 Precipitation of lysozyme solubilized in reverse micelles by dissolved $CO_2$ Haifei, Z.;J. Lu;B. Han https://doi.org/10.1016/S0896-8446(01)00053-5
  6. J. Food Sci. v.63 Reversed micellar extraction of hen egg lysozyme Chou, S. H.;B. H. Chiang https://doi.org/10.1111/j.1365-2621.1998.tb15751.x
  7. Biotech. Bioeng. v.53 Mechanism of protein extraction from the solid state by water-in-oil microemulsions Douglas, G. H. https://doi.org/10.1002/(SICI)1097-0290(19970320)53:6<583::AID-BIT6>3.0.CO;2-I
  8. Chem. Phys. Lett. v.118 Solubilization by reverse micelles: solute localization and structure perturbation Pileni, M. P.;T. Zemb;C. Petit https://doi.org/10.1016/0009-2614(85)85402-6
  9. Sep. Sci. Technol. v.22 Liquid-liquid extraction of low molecular proteins by selective solubilixation in reversed micelles Goklen, K. E.;T. A. Hatton https://doi.org/10.1080/01496398708068984
  10. Biotechnol. Prog. v.12 Liquid-liquid extraction of proteins with reverse micelles Pires, M. J.;M. R. Aires-Barros;J. M. S. Cabral https://doi.org/10.1021/bp950050l