• Title/Summary/Keyword: surfaces characteristics

Search Result 1,654, Processing Time 0.026 seconds

Sulfonated Poly(ethylene glycol) Containing Methacrylate Copolymer Surfaces; Preparation, Characterization and In Vitro Biocompatibility

  • Park, Ki-Dong;Park, Hyung-Dal;Lee, Hee-Jung;Kim, Young-Ha;Tooru Ooya;Nobuhiko Yui
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.342-351
    • /
    • 2004
  • Poly(ethylene glycol) (PEG1K) and sulfonated PEG (PEG1K-SO$_3$) methacrylate (MA) copolymers have been prepared and characterized. The structures of the synthesized copolymers were confirmed by $^1$H and $^{13}$ C NMR spectroscopy and elemental analysis. The bulk characteristics of the copolymers were evaluated by viscosity and thermal analysis. The surface properties of the copolymers were investigated using dynamic contact angle measurements and electron spectroscopy for chemical analysis. The hydrophilicity of the surfaces modified with PEG1KMA or PEG1K-SO$_3$MA increased, possibly as a result of the orientation of the hydrophilic PEG1KMA/PEG1K-SO$_3$MA chains into the water phase. Platelets adhered less to the surfaces of the copolymers than they did to a polyurethane control. In addition, adhesion of platelets to the copolymer surfaces decreased upon increasing the chain density of PEG1KMA and sulfonated PEG1KMA in the copolymers. Both bacterial adhesion and protein adsorption were significantly reduced on the copolymer surfaces and their levels differ depending on the kind of surface or media.

Analysis of Soil-Lug Interaction Characteristics (토양-러그 상호작용의 특성 해석)

  • ;T. Kishimoto;;大友功一(K. ohotomo)
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.179-186
    • /
    • 2000
  • Interactions between wheel lug surfaces and soil were analyzed through wheel motion. In this paper, lug surfaces such as trailing and leading lug sides and a lug face were analyzed and reported. The interactions between the surfaces and soil were expressed as the horizontal and vertical directions of resultant forces acting on the surfaces. There analysis indicated qualitatively that (1) the trailing lug side is mainly related to produce motion resistance and reaction to dynamic load, (2) the lug face is related to produce not only the motion resistance, the reaction to the dynamic load but also the traction and (3) the leading lug side is mainly related to produce the traction and the reaction to the dynamic load. Experiments were conducted to prove the results of the motion analysis. Normal and tangential forces acting on the surfaces were measured, and the traction, the motion resistance and the reaction to the dynamic load were calculated with wheel rotational and lug design angles. The experiments proved that the results of wheel motion analyses above mentioned as (1), (2) and obtained from the analysis were correct.

  • PDF

Odd-even Effects on the Surface Anchoring Strength and the Pretilt Angle Generation in NLC on Rubbed Polythiophene Surfaces with Alkyl Chain Lengths

  • Seo, Dae-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.12 no.1
    • /
    • pp.69-74
    • /
    • 1999
  • We have investigated that the high pretilt angle of the NLC, 4-n-pentyl-4-cyanobiphenyl (5CB), was observed on rubbed polythiophene (PTP) surfaces with alkyl chains with more than 10 carbon atoms; it is attributed to the surface-excluded volume effect by the alkyl chain lengths between the LCs and the PTP surfaces. Next, we investigated that the odd-even effect of the polar anchoring strength in 5CB on rubbed PTP surfaces with alkyl chain lengths has been successfully evaluated. The anchoring strength of 5CB for rubbed PTP surfaces with odd-number is weak compared with even-number up to the 6 carbon atoms in the alkyl chain; however, odd-number is strong compared with even-number above 7 carbon atoms. The weak anchoring strength of 5CB is approximately $1\times10^{-3} (J/m^2$) on rubbed PTP surface with 7 carbon atoms; it is relatively strong anchoring strength. Consequently, we conclude that the odd-even effects of the polar anchoring strength in NLCs are strongly related to the characteristics of the polymer and observed clearly for short alkyl chain lengths.

  • PDF

Characteristics on Spray Cooling Performance on the Micro-Porous Coated Surfaces (마이크로다공성 발열체 표면에서의 액체분무 냉각성능 특성)

  • Kim Yoon-Ho;Choi Chi-Hwan;Lee Kyu-Jung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.304-311
    • /
    • 2006
  • Experiments on evaporative spray cooling on the square plate heaters with plain or micro-porous coated surfaces were performed in this study. Micro-porous coated surfaces were made by using DOM [Diamond particle, Omegabond 101, Methyl-Ethyl-Keton] method. In case of purely air-jet cooling, the micro-porous coating doesn't affect the cooling capacity. In spray cooling three different flow patterns (complete wetting, evaporative wetting, dryout) are observed on both plain and micro-porous coated surfaces. The effects of various operating conditions, such as water flow rate, particle size, and coating thickness were investigated on the micro-porous coated surfaces. It is found that the level of surface wetting is an important factor to determine the performance of spray cooling. It depends on the balance between absorbed liquid amount by capillary force over porosity and the evaporative amount. The micro-porous coated surface has largest cooling capacity, especially in the evaporative wetting zone. It is found that the effects of liquid flow rate and coating thickness are significant in evaporative wetting zone, but are not in complete wetting and dryout zones.

Micro/nano Tribological and Water Wetting Characteristics of Ion Beam Treated PTFE Surfaces

  • Yoon, Eui-Sung;Oh, Hyun-Jin;Yang, Seung-Ho;Kong, Hosung
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.12-16
    • /
    • 2002
  • Micro/nano tribological and water wetting characteristics of ion beam treated PTFE (polytetrafluoroethylene) surfaces were experimentally studied. The ion beam treatment was performed with a hollow cathode ion gun at different argon ion dose conditions in a vacuum chamber to modify the topography of PTFE surface. Micro/nano tribological characteristics, water wetting angles and roughness were measured with a micro tribe tester, SPM (scanning probe microscope), contact anglemeter and profilometer, respectively. Results showed that surface roughness increased with the argon ion dose. Water wetting angle of the ion beam treated samples increased with the ion dose, so the surface shows an ultra-hydrophobic nature. Micro-adhesion and micro-friction depend on the wetting characteristics of the PTFE samples. However, nano-tribological characteristics showed different results. The scale effect of surface topography on tribological characteristics was discussed. Also, the water wetting characteristics of modified PTFE samples were discussed in terms of the surface topographic characteristics.

Characteristics of Inclined Plane Constructed by High speed Ball End Milling according to the Variation of Cutting Direction(I) (공구경로 변화에 따른 고속 볼 엔드밀 가공에서 경사면의 특성(I))

  • 강명창
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.137-143
    • /
    • 1999
  • The study of the high speed machining of inclined plane using ball end mill is performed. The use of ball end mill is rapidly growing in die and mold manufacturing. The cutting characteristics, such as cuttin g force, surface roughness and surface profile, are varied according to the variation of cutting directions. Free surface is cut using ball end mill, the surface profile is greatly varied depending upon the cutting direction. So this study will deal with the characteristics of cutting such as cutting efficiency according to the inclined plane of the workpiece, the cutting force according to tool path, surface profile and the roughness of surface. The optimal cutting direction to be applied the cutting for 3-D sculptured surfaces can be show through the results of this study.

  • PDF

A Study on the Nano-Deformation Characteristics of Grain-Size Controlled Rheology Material Surfaces for Surface Crack Prediction (표면크랙 예측을 위한 결정립 제어 레오로지 소재 표면의 나노 변형특성에 관한 연구)

  • 윤성원;김현일;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.355-358
    • /
    • 2004
  • In this study, the deformation characteristics of grain-size controlled rheology materials surfaces were investigated as a part of the research on the surface crack prediction in semi-solid formed automobile components. The microstructure of rheology Al-Si alloys consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary region of semi-solid aluminum alloys (356 alloy and 319 alloy) were investigated through the nanoindentation/scratch experiments and the AFM observation.

  • PDF

Characterization of Textures for Low Noise Concrete Pavement

  • Moon, Han-Young;Ha, Sang-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.461-464
    • /
    • 2003
  • Portland Cement Concrete (PCC) pavements have the advantage of durability and superior surface friction when compared to most dense-graded asphalt. However, data collected to date generally show PCC pavements to create more noise than asphaltic surfaces. As the results of research, surfaces of exposed aggregate, tining and grooving concrete pavements appear to provide better noise quality characteristics as well as good frictional characteristics and durability. In this paper, several methods of texturing were considered to reduce tire/pavement noise. As the results of this paper, PCC pavements with special texturing have superior surface friction as well as noise reductions when compared to conventional PCC pavement. Especially, Exposed Aggregate Concrete (EAC) surface appears to provide better noise quality characteristics. Conclusively, if overall noise and safety are considered simultaneously, EAC pavement that provides satisfactory friction as well as better noise reductions is suggested.

  • PDF

Electro-optical Characteristics of the TN Cell Photo-aligned on the Blending Photopolymer Surfaces (복합 광폴리머 표면을 이용한 광배향 TN 셀의 전기 광학 특성)

  • 황정연;서대식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.7
    • /
    • pp.600-605
    • /
    • 2001
  • The electro-optical (EO) performances for the twisted-nematic (TN)-liquid crystal display (LCD) photo-aligned with polarized UV exposure on various blending photopolymer surfaces were investigated. Excellent LC alignment and voltage-transmittance (V-T) characteristics for TN-LCD photo-aligned with polarized UV exposure of normal incidence on the blending photopolymer (polyimide (PI) +PM4Ch(poly(4-methacryloyloxy chalcone))) surface containing chalcone group can be achieved. The EO performances for the TN-LCD photo-aligned on the blending photopolymer can be improved due to the photosensitivity by long side chain of the photopolymer.

  • PDF

A Study on the Burning Characteristics of Composite Propellants at Low Pressure using Vacuum Strand Burner (Vacuum Strand Burner를 이용한 혼합형 추진제의 저압 연소특성 연구)

  • 김인철;유지창;박영규;이태호
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.39-45
    • /
    • 1994
  • Combustion characteristics of the solid composite propellants were studied from burning rate, ignition and steady combustion processes, and structure of the extinguished surfaces. Optical Vacuum Strand Burner (OVSB) system was desisted and configured to study those. Burning rates of the propellants were measured by OVSB at low pressure range by developed ten method. video camera(30 frames/s) was used to take potographs of the phenomena of ignition and combustion of propellant within the test cell of the OVSB. Burning surfaces of the propellants that were extinguished by rapid depressurization method were analyzed with Scanning Electron Microscope. (SEM).

  • PDF