• Title/Summary/Keyword: surfaces characteristics

Search Result 1,654, Processing Time 0.027 seconds

Pressure Drop Characteristics in a Coolant Passage With Turning Region and Rotation (냉각유로 내 곡관부 및 유로의 회전이 압력강하에 미치는 영향)

  • Kim, Kyung-Min;Cho, Hyung-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.2 s.41
    • /
    • pp.32-40
    • /
    • 2007
  • The present study investigated local pressure drop in a rotating smooth square duct with turning region. The duct has a hydraulic diameter $(D_h)$ of 26.7mm and a divider wall of 6.0mm or $0.225D_h$. The distance between the tip of the divider and the outer wall of the duct is $1.0D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000, and the rotation number (Ro) is varied from 0.0 to 0.20. The pressure coefficient distribution $(C_p)$, the friction factor (f) and the thermal performance $({\eta})$ are presented on the leading, the trailing and the outer surfaces. It is found that the curvature of the $180^{\circ}-turn$ produces Dean vortices that cause the high pressure drop in the turning region. The duct rotation results in the pressure coefficient discrepancy between the leading and trailing surfaces. That is, the high pressure values appear on the trailing surface in the first-pass and on the leading and side surfaces in the second-pass. As the rotation number increases, the pressure discrepancy enlarges. In the fuming region, a pair of the Dean vortices in the stationary case transform into one large asymmetric vortex cell, and then the pressure drop characteristics also change.

NUMERICAL INVESTIGATION ON HYDRODYNAMIC LUBRICATION CHARACTERISTICS OF MICRO DIMPLE TEXTURED SURFACES (미세 딤플 가공 표면의 수력학적 윤활특성에 대한 수치해석)

  • Hong, Sa-Hoon;Lee, Jae-Ung;Cho, Min-Haeng;Lee, Seong-Hyuk
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.56-61
    • /
    • 2009
  • This study deals with the numerical investigation on two-dimensional lubrication characteristics of micro-dimple shapes fabricated on solid surfaces by using the commercial CFD code (Fluent V.6.3) to examine the influence of micro dimple depth and width on the reduction in friction under the sliding plate condition. In addition, single and multiple dimple arrays are simulated, all for a fixed area fraction of dimple on the surface. As a result, it is found that the existence of micro-dimpled surface makes it possible to substantially reduce the friction forces exerted on the surfaces, and such an optimum dimple depth would be present because the dimple depth larger than the optimum value did no longer affect the reduction in shear stresses, indicating that the reduction of friction is likely to be associated with inner flows of lubricant inside dimples. Moreover, it is observed that at the fixed area fraction, the friction reduction increases with the increase of dimple diameter.

Lubrication Behavior of Slider Bearing with Square Pocket Surface (사각 포켓형상 표면을 갖는 슬라이더 베어링의 윤활거동)

  • Chin, Do-Hun;Kim, Kwang-Heui;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.119-125
    • /
    • 2017
  • In this paper, the characteristics and load carrying capacity of square pocket surfaces on a slider bearing are discussed for the thin film effect by the square pocket slider bearing. To study the lubrication, a Reynolds equation is used in this paper for the analysis of the slider bearing characteristics with square pocket surfaces. For numerical analysis, the central differencing scheme finite difference method is used. In a slider bearing with square pocket surfaces, the simulation dependent parameters such as pressure and load carrying capacity of the bearing can be acquired from the independent parameters, the slope of the slider bearing and number of pockets on the upper slider. These results can be acquired by the programmed softwar,e and they can be analyzed and stored in a sequential data file for later analysis. Furthermore, their pressure and load capacity distribution can be displayed easily by using the developed program with the Matlab GUI.

A fractal fracture model and application to concrete with different aggregate sizes and loading rates

  • Chang, Kug Kwan;Xi, Yunping;Roh, Y.S.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.2
    • /
    • pp.147-161
    • /
    • 2006
  • Recent developments in fractal theory suggest that fractal may provide a more realistic representation of characteristics of cementitious materials. In this paper, the roughness of fracture surfaces in cementitious material has been characterized by fractal theory. A systematic experimental investigation was carried out to examine the dependency of fracture parameters on the aggregate sizes as well as the loading rates. Three maximum aggregate sizes (4.76 mm, 12.7 mm, and 19.1 mm) and two loading rates (slow and fast loading rate) were used. A total of 25 compression tests and 25 tension tests were performed. All fracture parameters exhibited an increase, to varying degrees, when aggregates were added to the mortar matrix. The fracture surfaces of the specimens were digitized and analyzed. Results of the fractal analysis suggested that concrete fracture surfaces exhibit fractal characteristics, and the fractal geometry provide a useful tool for characterizing nonlinear fracture behavior of concrete. Fractal dimension D was monotonically increased as maximum aggregate sizes increase. A new fractal fracture model was developed which considers the size and shape of aggregate, and the crack paths in the constituent phases. Detailed analyses were given for four different types of fracture paths. The fractal fracture model can estimate fractal dimension for multiphase composites.

Liquid crystal alignment effects for the photo-aligned VA-LCD on the photo-polymer

  • Hwang, Jeoung-Yeon;Seo, Dae-Shik;Hahn, Eun-Joo;Kim, Jae-Hyung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.3
    • /
    • pp.10-13
    • /
    • 2000
  • In this study the new photo-alignment material copoly(PM4Ch-ChMa)(copoly (poly (4-methancryloyloxy)chalcone-cholesteryl methacry late)) was synthesized, Also, the liquid crystal (LC) aligning capabilities and the electro-optical(EO) characteristics for the photo-aligned vertical-aligned(VA)-LC display(LCD) were studied. The monodomain alignment of the NLC for the photo-aligned VA-LCD by linearly polarized UB exposure on the Photo-dimerized copoly(PM4Ch-ChMA) surface was observed,. Excellent Voltage-transmittance characteristics for the VA-LCD photo-aligned by polarized UV exposure on the copoly (PM4Ch-ChMA) surfaces for 1 min was achieved. The response time of the VA-LCD photo-aligned by polarized UV exposure on the copoly (PM4Ch-ChMA) surfaces for 1 min was 39.3 ms, We suggest that the photo-dimerized chacone group increased with increasing UV exposure time, which then contributes to a low response time of the photo-aligned VA-LCD on the copoly (PM4Ch-ChMA) surfaces.

  • PDF

Friction and Wear Characteristics of PTFE-Polyimide Composite (PTFE-폴리이미드 복합 재료의 마찰과 마모 특성)

  • 심현해;권오관
    • Tribology and Lubricants
    • /
    • v.11 no.4
    • /
    • pp.28-34
    • /
    • 1995
  • PTFE has good mechanical and chemical stability at wide temperature range, and more over, shows a low value of friction coefficient. On the other hand, it shows cold flow and high wear rate. However, these short comings can be overcome by adding various fillers. In this experiment, PTFE and polyimide powder were mixed into composite and its tribological characteristics was investigated. 100% polyimide was also tested for comparison. The countefface material was a stainless steel (SUS304). Friction and wear tester of ring-on-block type was used at room temperature and under atmosphere. After the wear test, the worn surfaces were examined by optical microscope. The test results show that PTFE-polyimide composite generates. the wear transfer film on both sides of the friction surfaces, and, the friction coefficient and the wear rates are relatively low. 100% polyimide generated little wear transfer films, showed high friction and wear rates, and also showed some problems of vibration and noise. It even damaged the stainless steel countefface. It was concluded that 100% polyimide does not generate transfer film well because its shear resistanbe is high and it stickslips, thus, friction coefficients and wear rates are high. In case of PTFE-polyimide composite, on the other hand, transfer film containing sufficient PTFE adheres and remains on both wear surfaces well enough because PTFE has low shear resistance. Polyimide particles in the composite were proved to be able to bear normal load and does not show stick-slip because they are covered with transfer film containing much PTFE.

Characteristics of Community-Level Physiological Profile (CLPP) of Biofilm Microorganisms Formed on Different Drinking Water Distribution Pipe Materials (수도관 재질에 따른 생물막 형성 미생물의 Community-Level Physiological Profile(CLPP) 특성)

  • Park, Se-Keun;Lee, Hyun-dong;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.3
    • /
    • pp.431-441
    • /
    • 2006
  • This study investigated the physiological characteristics of biofilm microorganisms formed onto the different drinking water distribution pipe surfaces. The simulated drinking water distribution pipe system which had several PVC, STS 304, and GS coupons was operated at flow velocity of 0.08 m/sec (Re 1,950) and 0.28 m/sec (Re 7,300), respectively. At velocity of 0.08 m/sec, the number of viable heterotrophic bacteria in the biofilm over the 3 months of operation averaged $3.3{\times}10^4$, $8.7{\times}10^4$, and $7.2{\times}10^3CFU/cm^2$ for PVC, STS, and GS surfaces, respectively. The number of attached heterotrophic bacteria averaged $1.4{\times}10^3$, $5.6{\times}10^2$, and $6.5{\times}10^2CFU/cm^2$ on PVC, STS, and GS surfaces at the system with relatively high flow velocity of 0.28m/sec. The changes of physiological profile of biofilm-forming microorganisms were characterized by community-level assay that utilized the Biolog GN microplates. Biofilms that formed on different pipe surfaces displayed distinctive patterns of community-level physiological profile (CLPP), which reflected the metabolic preference for different carbon sources and/or the utilization of these carbon sources to varying degrees. The CLPP patterns have shown that the metabolic potential of a biofilm community was different depending on the pipe material. The effect of the pipe material was also characterized differently by operation condition such as flow rate. At flow velocity of 0.08 m/sec, the metabolic potential of biofilm microorganisms on GS surface showed lower levels than PVC and STS biofilms. For biofilms on pipe material surfaces exposed to water flowing at 0.28 m/sec, the metabolic potential was in order of PVC>GS>STS. Generally, the levels of the bacterial biofilm's metabolic potentials were shown to be notably higher on pipe surfaces exposed to water at 0.08 m/sec when compared to those on pipe surfaces exposed to water at 0.28 m/sec.

Characteristics of the molar surface after removal of cervical enamel projections: comparison of three different rotating instruments

  • Ko, Min-Jeong;Cho, Chan-Myung;Jeong, Seong-Nyum
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.2
    • /
    • pp.107-115
    • /
    • 2016
  • Purpose: The aim of this study was to evaluate and compare tooth surface characteristics in extracted human molars after cervical enamel projections (CEPs) were removed with the use of three rotating instruments. Methods: We classified 60 extracted molars due to periodontal lesion with CEPs into grade I, II, or III, according to the Masters and Hoskins' criteria. Each group contained 20 specimens. Three rotating instruments were used to remove the CEPs: a piezoelectric ultrasonic scaler, a periodontal bur, and a diamond bur. Tooth surface characteristics before and after removal of the projections were then evaluated with scanning electron microscopy (SEM). We analyzed the characteristics of the tooth surfaces with respect to roughness and whether the enamel projections had been completely removed. Results: In SEM images, surfaces treated with the diamond bur were smoothest, but this instrument caused considerable harm to tooth structures near the CEPs. The piezoelectric ultrasonic scaler group produced the roughest surface but caused less harm to the tooth structure near the furcation. In general, the surfaces treated with the periodontal bur were smoother than those treated with the ultrasonic scaler, and the periodontal bur did not invade adjacent tooth structures. Conclusions: For removal of grade II CEPs, the most effective instrument was the diamond bur. However, in removing grade III projections, the diamond bur can destroy both adjacent tooth structures and the periodontal apparatus. In such cases, careful use of the periodontal bur may be an appropriate substitute.

Fireside Corrosion Characteristics in Coal-Fired Boiler Tube (석탄연소중 발생되는 보일러 튜브의 화염측 부식특성)

  • Kim, Tae-Hyung;Seo, Sang-Il;Park, Ho-Young;Kim, Young-Ju
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.276-281
    • /
    • 2006
  • Although fireside corrosion of heat transfer surfaces in coal fired steam generators has been a problem to some extent for a number of tears, with the advent of low NOx firing systems these surfaces can be exposed to conditions that will exacerbate wastage rates. Numerous reports of waterwall wastage in coal fired boilers have appeared in the literature. It is believed that wastage results both from gaseous phase attack of metal surfaces and from deposition of ash and unburned fuel. Gaseous phase attack is known to occur in the presence of reducing sulfur species such as $H_2S$ and in the presence of fuel chlorine. The highest wastage rates are thought to be due to deposition of unoxidized material and the presence of fuel chlorine. Localized wall and near wall conditions that may exacerbate wastage include reducing conditions, high temperatures, high heat fluxes, and a high fraction of unoxidized material deposited. So, this study is directed at developing an advanced corrosion model in coal-fired utility boilers.

  • PDF

The Elastic Contact Analysis of 3D Rough Surface including the Kurtosis (Kurtosis를 고려한 3차원 거친 표면의 탄성 접촉 해석)

  • 김태완;강민호;구영필;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.34-41
    • /
    • 2000
  • Surface roughness plays a significant role in friction, wear, and lubrication in machine components. Most engineering surfaces have the nongaussian distrubution. So, in this study, contact simulation are conducted for not only gaussian surfaces but also nongaussian surfaces. Nongaussian rough surface censidering the kurtosis is generated numerically, And the effects of kurtosis on real contact area fraction, average gap, and mean asperity contact pressure are studied. It will be shown that the real contact area fraction and the mean asperity contact pressure are sensitive to the characteristics of surface geometry according to kurtosis.

  • PDF