• Title/Summary/Keyword: surface-coated

Search Result 3,098, Processing Time 0.027 seconds

Surface Characteristics of TiN and ZrN Film Coated STD 61 by Sputtering (스퍼터링법으로 TiN 및 ZrN 피막 코팅된 STD 61의 표면특성)

  • Eun, Sang-Won;Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.6
    • /
    • pp.260-265
    • /
    • 2010
  • STD 61 steel has been widely used for tools, metallic mold and die for press working because of its favorable mechanical properties such as high toughness, and creep strength as well as excellent oxidation resistance. The STD 61 tool steel coated with TiN and ZrN by sputtering results in improvement of wear and corrosion resistance. In this study, surface characteristics of TiN and ZrN film coated STD 61 by sputtering were studied by using FE-SEM, EDS, XRD, and XRR and nanoindentation tests. From the results of surface characteristics of coated specimen, the ZrN coated surface showed finer granular than that of TiN coated surface. The coated layer structures of ZrN and TiN were grown to (111) and (200) preferred orientation. From the results of XRR test for surface roughness, density and growth rate of coating film, surface roughness and growth rate of ZrN coated film revealed lower values those of TiN coated film, whereas density of ZrN coated film showed higher values than that of TiN coated film. From the nanohardness and elastic modulus test, nanohardness value and elastic modulus of ZrN coated film became higher than those of TiN coated film.

Corrosion Characteristics of Ti, Ti/Cr Coated and Plasma-Nitrided Surface for Stainless Steel Containing Ti (Ti가 함유된 스테인리스강에서 Ti, Ti/cr코팅표면과 플라즈마질화표면의 부식특성)

  • 최한철;이승훈;김관휴
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.6
    • /
    • pp.391-400
    • /
    • 2002
  • Corrosion characteristics of Ti, Ti/Cr coated and plasma-nitrided surface for stainless steel containing Ti have been studied. Stainless steels containing 0.09-0.92wt% Ti were fabricated by using vacuum furnace and solutionized for 1hr at 105$0^{\circ}C$. Ti and Cr coatings were done on solutionized stainless steel surface by EB-PVD. The Ti coated specimen were coated by Cr and were nitrided by plasma at $450^{\circ}C$ for 5hr. Microstructure and phase analysis were performed using SEM, OM and EDX. Corrosion behavior of the coated specimen was investigated by electrochemical test. The coated surface was of fine columnar structure. The Ti/Cr coated surface was denser than the Ti coated and the Ti coated-nitrided surfaces. The corrosion and pitting potential increased in proportion to the Ti content, coating temperature, coating thickness and formation of stable oxide film. The current density in active and passive region decreased in the case of Ti/Cr coated sample and Ti coated-nitrided samples. Especially the plasma nitrided specimen after Ti coating have a good corrosion resistance compared with the Ti coated specimen. The number and size of pits decreased as Ti content of matrix increased.

Corrosion Characteristics of Ti, Ti/Cr Coated and Plasma-Nitrided Surface for Stainless Steel Containing Ti (Ti가 함유된 스테인리스강에서 Ti, Ti/Cr 코팅표면과 플라즈마질화표면의 부식특성)

  • 최한철;이승훈;김관휴
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.1
    • /
    • pp.89-98
    • /
    • 2003
  • Corrosion characteristics of Ti, Ti/Cr coated and plasma-nitrided surface for stainless steel containing Ti have been studied. Stainless steels containing 0.09-0.92wt% Ti were fabricated by using vacuum furnace and solutionized for 1hr at $1050^{\circ}C$. Ti and Cr coatings were done on solutionized stainless steel surface by EB-PVD. The Ti coated specimen were coated by Cr and were nitrided by plasma at $450^{\circ}C$ for 5hr Microstructure and phase analysis were performed using SEM, OM and EDX. Corrosion behavior of the coated specimen was investigated by electrochemical test. The coated surface was of fine columnar structure. The Ti/Cr coated surface was denser than the Ti coated and the Ti coated-nitrided surfaces. The corrosion and pitting potential increased in proportion to the Ti content, coating temperature, coating thickness and formation of stable oxide film. The current density in active and passive region decreased in the case of Ti/Cr coated sample and Ti coated-nitrided samples. Especially the plasma nitrided specimen after Ti coating have a good corrosion resistance compared with the Ti coated specimen. The number and size of pits decreased as Ti content of matrix increased.

Improvement of Coated Paper Properties by Surface Sizing with Cationic Polymers (양성고분자를 이용한 표면사이징을 통한 도공지의 물성 개선)

  • 전대구;이학래
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.3
    • /
    • pp.21-28
    • /
    • 2003
  • It is essential to use base papers having proper surface characteristics in coating operation for improving coated paper quality and coater runnability. To fulfill these purposes surface sizing of coating base stock with anionic oxidized starch is commonly practiced. It is suggested that use of cationic starch for surface sizing rather than conventional oxidized starch will improve coated paper quality since cationic starch penetrates less into paper structure because of its strong electrostatic interaction with anionically charged paper surface. Strong interaction of cationic surface sizing starch with anionic coating color is expected to promote rapid immobilization of the coating color and improve coating holdout and optical property. The immediate objective of this study was to examine the influence of surface sizing starches on the properties of coated papers. Structural characteristics of the coatings formed on the substrate surface sized with cationic and anionic starches were examined. To enhance the efficiency of cationic surface sizing starch on coated paper properties, strongly charged cationic polymers were added to the surface sizing starch and its effect on coated paper properties was evaluated. Results showed that opacity and light scattering coefficient of coated paper were higher when base paper surface sized with cationic starch was used. Addition of less than 1% of cationic poly-DADMAC to the cationic surface sizing starch improved the opacity of coated paper significantly.

EFFECTS OF SURFACE COATING ON THE SCREW RELEASE OF DENTAL IMPLANT SCREW (치과용 임플란트 나사의 풀림에 미치는 표면코팅 효과)

  • Koo Cheol-In;Chung Chae-Heon;Choe Han-Cheol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.2
    • /
    • pp.210-225
    • /
    • 2004
  • Statement of problem: Implant screw loosening has been remained problem in restorative practices. Surface treatment of screw plays a role of preventing screw from loosening in implant screw mechanism. Purpose : The purpose of this study was to investigate surface characteristics of TiN and ZrN film ion plated screw with titanium and gold alloy screw and to evaluate wear resistance, surface roughness, and film adhesion on screw surface using various instruments. Material and methods : GoldTite screws and titanium screws provided by 3i (Implant Innovation, USA) and TorqTite screws or titanium screws by Steri-Oss (Nobel Biocare, USA) and gold screws and titanium screws by AVANA (Osstem Implant, korea) were selected. Ion plating which is much superior to other surface modification techniques was carried out for gold screws and titanium screws using Ti and Zr coating materials with nitrogen gas. Ion nitrided surface of each abutment screw was observed with field emission scanning electron microscopy (FE-SEM, micro-diamond scratch tester, vickers hardness tester, and surface roughness tester. Results : 1) The surface of gold screw and GoldTite is more smooth than ones of other kinds of non coated screw. 2) The ZrN and TiN coated surface is the more smooth than ones of other kinds of screw. 3) The hardness of TiN and ZrN coated surface showed higher than that of non coated surface. 4) The TiN coated titanium screw and ZrN coated gold screw have a good wear resistance and adhesion on the surface. 5) The surface of ZrN coated screw showed low surface roughness compared with the surface of TiN coated screw. Conclusion : It is considered that the TiN and ZrN coated screw which would prevent a screw from loosening can be applicable to implant system and confirmed that TiN and ZrN film act as lubricant on surface of screw due to decrease of friction for recycled tightening and loosening.

Effect of Calendering Variables on the Properties of Coated paper (캘린더 처리조건이 도공지 품질에 미치는 영향)

  • 이용규;김창근;이광섭
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.2
    • /
    • pp.49-57
    • /
    • 2001
  • This study was performed to identify the effect of calendering variables on the properties of coated paper such as sheet gloss, surface roughness, opacity, etc. The effect of calendering variables including the number of nips, pressure, machine speed and moisture content on the properties of coated paper was investigated. The calender was installed with two steel rolls and one cotton-made roll. With this calender, the coated sheets were passed through the calender from 1 to 4 times, applying the linear pressure on calender rolls, 5 through 100kg/cm and operating the machine speed 3 to 12m/min. Also, the moisture content of coated sheet was varied about 5 and 10%. It was found that sheet gloss and surface roughness of coated paper was increased with increasing the number of passing nips, linear roll pressure and the moisture content of coated paper. But it was shown that the opacity and brightness of coated paper were decreased under the above conditions due to the blackening. It was also suggested that the soft nip possibly increased the thermoplasticity of coating layer with the heat of steel roll, resulting in the reinforcement of surface properties positively. The sheet gloss and surface roughness of coated paper could be improved by the longer dwell time over the rolls.

  • PDF

The Surface Characteristics of Ti/TiN Film Coated Sintered Stainless Steels by EB-PVD Method (EB-PVD법에 의한 Ti/TiN film 코팅된 스테인리스강 소결체의 표면특성)

  • 최한철
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.3
    • /
    • pp.195-205
    • /
    • 2001
  • The surface characteristics of Ti/TiN films coated on sintered stainless steels (SSS) by electron beam physical vapour deposition (EB-PVD) were investigated. Stainless steel compacts containing 2, 4, and 10wt%Cu were prepared by the electroless Cu-plating method, which results in increased homogenization in the alloying powder. The specimens were coated with Ti and TiN with a 1.0$\mu\textrm{m}$ thickness respectively by EB-PVD. The microstructures were investigated using scanning electron microscopy (SEM). The corrosion behaviors were investigated using a potentiosat in 0.1 M $H_2$$SO_4$, and 0.1M HCl solutions and the corrosion surface was observed using SEM and XPS. The Ti coated specimens showed rough surface compared to Ti/TiN coated specimens. Ti and Ti/TiN coated SSS revealed a higher corrosion and pitting potential from anodic polarization curves than that of Ti and Ti/TiN uncoated SSS. In addition, Ti/TiN coated SSS containing 10wt% Cu exhibited good resistance to pitting corrosion due to the formation of a dense film on the surface and the decrease in interconnected porosity by electroless coated Cu.

  • PDF

Corrosion Behaviors of ZrN Coated on Dental Co-Cr Alloys (ZrN 코팅된 치과 주조용 Co-Cr 합금의 부식거동)

  • Lee, Sang-Hun;Nah, Jung-Sook;Jang, Jae-Young
    • Journal of Technologic Dentistry
    • /
    • v.35 no.4
    • /
    • pp.343-352
    • /
    • 2013
  • Purpose: The purpose of this study was to investigate to effect of the ZrN coated on corrosion resistance and physical property of dental Co-Cr alloys using various instruments. Methods: The specimens were used, respectively, for experiment, Arc Ion plating was carried out for dental casting alloys using ZrN coated materials with nitrogen gas. ZrN coated surface of each specimen was observed with field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), vickers hardness tester, and electrochemical tester. Results: The current density of ZrN coated specimen was smaller than that of non-coated specimen in 0.9% NaCl solution. Pit nucleated at scratch of specimen. The pitting corrosion resistant |$E_{max}-E_{rep}$| increased in order of ZrN coated (110 mV), and non-coated wire (100 mV). Conclusion: The corrosion potential of the ZrN coated specimen was comparatively high. the surface of ZrN coated specimen was more smooth than that of other kinds of non-coated specimen. ZrN coated surface showed higher hardness than that of non-coated surface.

Surface Characteristics of Polymer Coated NiTi Alloy Wire for Orthodontics (폴리머 코팅된 NiTi합금 교정선의 표면특성)

  • Cho, Joo-Young;Kim, Won-Gi;Choi, Hwan-Suk;Lee, Ho-Jong;Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.3
    • /
    • pp.132-141
    • /
    • 2010
  • NiTi alloy has been used for orthodontic wire due to good mechanical properties, such as elastic strength and frictional resistance, combined with a high resistance to corrosion. Recently, these wire were coated by polymer and ceramic materials for aesthetics. The purpose of this study was to investigate surface characteristics of polymer coated NiTi alloy wire for orthodontics using various instruments. Wires (round type and rectangular type) were used, respectively, for experiment. Polymer coating was carried out for wire. Specimen was investigated with field emission scanning electron microscopy(FE-SEM), energy dispersive x-ray spectroscopy(EDS) and atomic force microscopy(AFM). The phase transformation of non-coated NiTi wire from martensite to austenite occurred at the range of $14{\sim}15^{\circ}C$, in the case of coated wire, it occurred at the range of $16{\sim}18^{\circ}C$. Polymer coating on NiTi wire surface decreased the surface defects such as scratch which was formed at severe machined surface. From the AFM results, the average surface roughness of non-coated and coated NiTi wire was 13.1 nm, and 224.5 nm, respectively. From convetional surface roughness test, the average surface roughness of non-coated and coated NiTi wire was $0.046{\mu}m$, and $0.718{\mu}m$, respectively.

Effects of HA and TiN Coating on the Electrochemical Characteristics of Ti-6Al-4 V Alloys for Bone Plates

  • Oh, Jae-Wook;Choe, Han-Cheol;Ko, Yeong-Mu
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.249-252
    • /
    • 2004
  • Effects of HA and TiN coating on the electrochemical characteristics of Ti-6AI-4V alloys for bone plates were investigated using various test methods. Ti-6AI-4V alloys were fabricated by using a vacuum induction furnace and bone plates were made by laser cutting and polishing. HA was made of extracted tooth sintered and then tooth ash was used as HA coating target. The TiN and HA film coating on the surface were carried on using electron-beam physical vapor deposition (EB-PVD) method. The corrosion behaviors of the samples were examined through potentiodynamic method in 0.9% NaCI solutions at $36.5\pm$$1^{\circ}C$ and corrosion surface was observed using SEM and XPS. The surface roughness of TiN coated bone plates was lower than that of tooth ash coated plates. The structure of TiN coated layer showed the columnar structure and tooth ash coated layer showed equiaxed and anisotrophic structure. The corrosion potential of the TiN coated specimen is comparatively high. The active current density of TiN and tooth ash coated alloy showed the range of about $1.0xl0^{-5}$ $A\textrm{cm}^2$, whereas that of the non-coated alloy was$ 1.0xl0^{-4}$ $A\textrm{cm}^2$. The active current densities of HA and TiN coated bone plates were smaller than that of non-coated bone plates in 0.9% NaCl solution. The pitting potential of TiN and HA coated alloy is more drastically increased than that of the non-coated alloy. The pit number and pit size of TiN and HA coated alloy decreased in compared with those of non-coated alloy. For the coated samples, corrosion resistance increased in the order of TiN coated, tooth ash coated, and non-coated alloy.