• 제목/요약/키워드: surface-breaking cracks

검색결과 23건 처리시간 0.022초

Finite Element Analysis of Laser-Generated Ultrasound for Characterizing Surface-Breaking Cracks

  • Jeong Hyun Jo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권5호
    • /
    • pp.1116-1122
    • /
    • 2005
  • A finite element method was used to simulate the wave propagation of laser-generated ultrasound and its interaction with surface breaking cracks in an elastic material. Thermoelastic laser line source on the material surface was approximated as a shear dipole and loaded as nodal forces in the plane-strain finite element (FE) model. The shear dipole- FE model was tested for the generation of ultrasound on the surface with no defect. The model was found to generate the Rayleigh surface wave. The model was then extended to examine the interaction of laser generated ultrasound with surface-breaking cracks of various depths. The crack-scattered waves were monitored to size the crack depth. The proposed model clearly reproduced the experimentally observed features that can be used to characterize the presence of surface-breaking cracks.

Development of Self-compensated Technique for Evaluation of Surface-breaking Crack by Using Laser Based Ultrasound

  • Choi, Sang-Woo;Lee, Joon-Hyun;Cho, Youn-Ho
    • 비파괴검사학회지
    • /
    • 제25권3호
    • /
    • pp.215-221
    • /
    • 2005
  • It is required to evaluate nondestructively depth of surface-breaking cracks in structures. In this paper, the self-compensated technique by laser-based ultrasound is used to measure the depth of surface-breaking defect. Optical generation of ultrasound produces a well defined pulse with reliable frequency content. It is broad banded and suitable for measurement of attenuation and scattering over a wide frequency range. The self-calibrated signal transmission data of surface wave shows good sensitivity as a practical tool far assessment of surface-breaking defect depth. It is suggested that the relationship between the signal transmission and crack depth can be used to predict the surface-breaking crack depths in structures.

Depth estimation for surface-breaking cracks in steel-fiber reinforced concrete using ultrasonic surface waves

  • Ahmet S. Kirlangic;Zafer Iscan
    • Structural Monitoring and Maintenance
    • /
    • 제9권4호
    • /
    • pp.373-388
    • /
    • 2022
  • A USW based diagnostic procedure is presented for estimating the depth of surface-breaking cracks. The diagnosis is demonstrated on seven lab-scale SFRC beam specimens, which are subjected to the CMOD controlled three-point bending test to create real bending cracks. Then, the recorded multiple ultrasonic signals are examined with the signal processing techniques, including wavelet transform and two-dimensional Fourier transform, to investigate the relationships between the crack depth and two diagnostic indices, namely the attenuation coefficient and dispersion index (DI). Finally, the reliabilities of these indices for depth estimation are verified with the visually measured crack depths as well as the crack features obtained with a digital image processing algorithm. It is found that the DI outperforms the attenuation coefficient in depth estimation, where this index displays good agreement with the visual inspection for 86% of the inspected specimens.

Angle Beam Ultrasonic Testing Models and Their Application to Identification and Sizing of Surface Breaking Vertical Cracks

  • Song, Sung-Jin;Kim, Hak-Joon;Jung, Hee-Jun;Kim, Young-H.
    • 비파괴검사학회지
    • /
    • 제22권6호
    • /
    • pp.627-636
    • /
    • 2002
  • Identification and sizing of surface breaking vertical cracks using angle beam ultrasonic testing in practical situation quite often become very difficult tasks due to the presence of non-relevant signals caused by geometric reflectors. The present work introduces effective and systematic approaches to take care of such a difficulty by use oi angle beam ultrasonic testing models that can predict the expected signals from various targets very accurately. Specifically, the model-based TIFD (Technique for Identification of Flaw signals using Deconvolution) is Proposed for the identification of the crack tip signals from the non-relevant geometric reflection signals. In addition, the model-based Size-Amplitude Curve is introduced for the reliable sizing of surface breaking vertical cracks.

레이저 유도 초음파 및 자기보상 기법을 이용한 재료의 표면균열 깊이 비파괴 평가 (Evaluation of Depth of Surface-breaking Slit by Nondestructive Self-calibrating Technique Using Laser Based Ultrasound)

  • 이준현;최상우;하상봉
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.745-753
    • /
    • 2002
  • It is required to evaluate nondestructively the crack depth of surface-breaking cracks for the assurance of safety of structure. Optical generation of ultrasound produces well defined pulses with a repeatable frequency content, that are free of any mechanical resonances; they are broad band and are ideal for the measurement of attenuation and scattering over a wide frequency range. Self-calibrating surface signal transmission measurement is very sensitive and practical tool for surface-breaking crack depth. In this paper, the self-calibrating technique by laser-based ultrasound is used to evaluate the depth of surface-breaking crack of material. It is suggested that the relationship between the signal transmission and crack depth can be used as a practical model for predicting the surface-breaking crack depths from the signal transmission measured in structure.

Automated Surface Wave Measurements for Evaluating the Depth of Surface-Breaking Cracks in Concrete

  • Kee, Seong-Hoon;Nam, Boohyun
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권3호
    • /
    • pp.307-321
    • /
    • 2015
  • The primary objective of this study is to investigate the feasibility of an innovative surface-mount sensor, made of a piezoelectric disc (PZT sensor), as a consistent source for surface wave velocity and transmission measurements in concrete structures. To this end, one concrete slab with lateral dimensions of 1500 by 1500 mm and a thickness of 200 mm was prepared in the laboratory. The concrete slab had a notch-type, surface-breaking crack at its center, with depths increasing from 0 to 100 mm at stepwise intervals of 10 mm. A PZT sensor was attached to the concrete surface and used to generate incident surface waves for surface wave measurements. Two accelerometers were used to measure the surface waves. Signals generated by the PZT sensors show a broad bandwidth with a center frequency around 40 kHz, and very good signal consistency in the frequency range from 0 to 100 kHz. Furthermore, repeatability of the surface wave velocity and transmission measurements is significantly improved compared to that obtained using manual impact sources. In addition, the PZT sensors are demonstrated to be effective for monitoring an actual surface-breaking crack in a concrete beam specimen subjected to various external loadings (compressive and flexural loading with stepwise increases). The findings in this study demonstrate that the surface mount sensor has great potential as a consistent source for surface wave velocity and transmission measurements for automated health monitoring of concrete structures.

Fatigue Crack Growth and Fracture behavior of Rail Steels

  • Seo, Jung Won;Kwon, Seok Jin;Lee, Dong Hyeong;Kwon, Sung Tae;Choi, Ha Yong
    • International Journal of Railway
    • /
    • 제5권3호
    • /
    • pp.129-134
    • /
    • 2012
  • Contact fatigue damages on the rail surface, such as head checks and squats are a growing problem. The fatigue cracks forming on the contact surface grow according to load and lubricating conditions and may end up breaking the rail. Rail fracture can be avoided by preventing the cracks from reaching the critical length. Therefore, the crack growth rate needs to be estimated precisely according to the conditions of the track and load to develop a maintenance plan against rail damages. Therefore, it is important to understand the mechanism of cracks initiation and growth on a rail due to repetitive rolling contact. In this study, we have investigated the crack growth behavior on the rail surface by using the twin-disc tests and the finite element analysis.

유한요소법을 이용한 레이저 유도 초음파와 표면 균열과의 상호작용 모델링 (Finite Element Simulation of Laser-Generated Ultrasound and Interaction with Surface Breaking Cracks)

  • 정현조;박문철
    • 비파괴검사학회지
    • /
    • 제24권3호
    • /
    • pp.259-267
    • /
    • 2004
  • 탄성매질에서 레이저 여기에 의한 열탄성 영역에서의 초음파 발생 현상과 표면 균열과의 상호작용을 유한요소법으로 모델링하였다. 반무한 탄성체 표면에 집속된 레이저 선원을 전단 쌍극자(shear dipole)로 모델링하고, 2차원 평면 변형율 유한요소법을 사용하였다. 발생된 표면파의 변위와 종파 및 횡파의 지향성을 관찰함으로써 전단 쌍극자-유한요소 모델의 타당성을 조사하였다. 표면파와 균열(기계가공된 2차원 홈)과의 상호작용을 관찰하기 위하여 2가지 경우를 고려하였다 먼저 레이저 소스와 수신 위치가 균열에 대하여 모두 고정되어 있는 경우, 다음으로 수신자가 고정되어 있고 소스가 시험체 표면 위를 이동하는 주사형의 경우이다. 첫 번째 경우에 균열 깊이 $0.3-5.0mm ({\lambda}_R/d=0.21{\sim}3.45)$에 대하여 균열 상단과 하단에서 각각 반사된 파의 변위로부터 균열깊이를 측정할 수 있음을 보였고, 두 번째 경우에 레이저 소스가 결함 위를 주사할 때 발생하는 반사파의 큰 진폭 변화를 통하여 파장보다 한 차원 낮은 깊이의 균열을 탐지할 수 있음을 보였다.

알루미늄 평판의 표면결함에 대한 와전류 신호의 유한요소해석 (Finite Element Analysis for Eddy Current Signal of Aluminum Plate with Surface Breaking Crack)

  • 이준현;이봉수;이민래
    • 대한기계학회논문집A
    • /
    • 제29권10호
    • /
    • pp.1336-1343
    • /
    • 2005
  • The detection mechanism of the flaw for the nondestructive testing using eddy current is related to the interaction of the induced eddy currents in the test specimen with flaws and the coupling of these interaction effects with the moving test probe. In this study, the two-dimensional electromagnetic finite element analysis(FEM) fur the eddy current signals of the aluminum plate with different depth of surface cracks is described and the comparison is also made between experimental and predicted signals analyzed by FEM. In addition, the characteristics of attenuation of the eddy current density due to the variation of the depth of a conductor are evaluated. The effective parameters for the application of eddy current technique to evaluate surface cracks are discussed by analyzing the characteristics of the eddy current signals due to the variation of crack depths.

A fracture mechanics simulation of the pre-holed concrete Brazilian discs

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher;Nezamabadi, Maryam Firoozi
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.343-351
    • /
    • 2018
  • Brazilian disc test is one of the most widely used experiments in the literature of geo-mechanics. In this work, the pre-holed concrete Brazilian disc specimens are numerically modelled by a two-dimensional discrete element approach. The cracks initiations, propagations and coalescences in the numerically simulated Brazilian discs (each containing a single cylindrical hole and or multiple holes) are studied. The pre-holed Brazilian discs are numerically tested under Brazilian test conditions. The single-holed Brazilian discs with different ratios of the diameter of the holes to that of the disc radius are modelled first. The breakage load in the ring type disc specimens containing an internal hole with varying diameters is measured and the crack propagation mechanism around the wall of the ring is investigated. The crack propagation and coalescence mechanisms are also studied for the case of multi-holes' concrete Brazilian discs. The numerical and experimental results show that the breaking mechanism of the pre-holed disc specimens is mainly due to the initiation of the radially induced tensile cracks which are growth from the surface of the central hole. Radially cracks propagated toward the direction of diametrical loading. It has been observed that for the case of disc specimens with multiple holes under diametrical compressive loading, the breaking process of the modelled specimens may occur due to the simultaneous cracks propagation and cracks coalescence phenomena. These results also show that as the hole diameter and the number of the holes increases both the failure stress and the crack initiation stress decreases. The experimental results already exist in the literature are quit agree with the proposed numerical simulation results which validates this simulation procedure.