• Title/Summary/Keyword: surface water quality

Search Result 1,368, Processing Time 0.025 seconds

Temporal and Spatial Variation and Removal Efficiency of Heavy Metals in the Stream Water Affected by Leachate from the Jiknaegol Tailings Impoundment of the Yeonhwa II Mine (제2연화광산 직내골 광미장 침출수에 오염된 하천수계의 시.공간적 수질변화 및 중금속 제거효율)

  • Lee, Pyeong-Koo;Kang, Min-Ju;Choi, Sang-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.1
    • /
    • pp.19-31
    • /
    • 2011
  • This study had been carried out to investigate spatial and temporal variations of the concentrations of trace metals for contaminated surface water in creek affected by leachate from the tailings impoundment of the Yeonhwa II mine for about 2 years. It was also to ascertain the metal removal efficiency for potentially deleterious metals by the artificial and natural attenuation processes such as retention ponds and hydrologic mixing of uncontaminated tributaries. The concentrations of As, Pb, Cd, and Cu for leachate in the rainy season were not detected. On the other hand, the concentrations of Zn, Fe, Mn, Al, and $SO_4^{2-}$ in the rainy season for leachate were 2-66 times higher than those in the dry season, due to the oxidation of the sulfide minerals and the dissolution of the secondary minerals. The concentrations of Zn and Cd for leachate and surface water of the upper creek in the rainy season exceeded the criteria of River Water Quality and Drinking Water Quality but in the dry season, those of analyzed all the metals (As, Pb, Cd, Cu, Zn, Cd, Fe, Mn, and Al) for surface water sampled at the study area were below the criteria of River Water Quality and Drinking Water Quality. In regard of the attenuation efficiency for the concentrations of metals, Fe, Mn, Al, Zn, Cd, As, and Cu were removed highly at retention ponds, while the removal efficiency for major cations and sulfate ($SO_4^{2-}$) were related to mixing of the uncontaminated tributaries. Therefore, the major attenuation processes of the metal and sulfate contents in creek affected by leachate from a tailing dump were precipitation (accompanied by metal co-precipitation and sorption), water dilution, and neutralization.

Reduction of Blue-green Algae and Its By-products using Intake of Deep Water in Summer (하절기 심층취수를 이용한 남조류 및 남조류 부산물질의 유입 저감)

  • Park, Hong-Ki;Jung, Eun-Young;Son, Hee-Jong;Choi, Jin-Taek
    • Journal of Environmental Science International
    • /
    • v.26 no.3
    • /
    • pp.393-399
    • /
    • 2017
  • In order to determine the optimal water intake point, the distribution of blue-Green algae and water quality factors in relation to the depth of the Mulgum and Maeri stations located downstream of the Nakdong River were investigated from Jun. 2015 to Sep. 2016. When the current surface water intake system was converted to the deep water intake system, Chl-a concentration and blue-Green algae were reduced by 64.1% and 80.5%, respectively. Microcystin-LR was reduced by 50% to 100%, while geosmin and 2-MIB of the odorant substances were reduced by 42.9% and 11.8%, respectively. The water quality factors such as pH, water temperature, TOC and COD were gradually decreased by 30% in deep water. Therefore, if we used the deep water intake system selectively in the summer season when blue-Green algae masses occur, the concentration of the influx of blue-green algae and its by-products can be expected to decrease, leading to reduced operation costs in tap water production and improved of raw water quality.

Watershed Classification Using Statistical Analysis of water Quality Data from Muju area (무주지역 수질특성자료의 통계학적 분석에 의한 소유역 구분)

  • 한원식;우남칠;이기철;이광식
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.19-32
    • /
    • 2002
  • This study is objected to identify the relations between surface- and shallow ground-water and the seasonal variation of their qualities in watersheds near Muju area. The water type shows mainly Ca-$HCO_3$type. Heavy-metal contamination of surface water is locally detected, due to the mixing with mine drainage. In October nitrate concentration is especially high in densely populated area. Cluster Analysis and Principal Component Analysis are implemented to interpret the complexity of the chemical variation of surface- and ground-water with large amount of chemical data. Based on the cluster analysis, surface-water was divided into five groups and ground-water into three groups. Principal Component Analysis efficiently supports the result of cluster analysis, allowing the identification of three main factors controlling the water quality. There are (1) hydrogeochemical factor, (2) anthropogenic factor and (3) heavy metal contaminated by mine drainage.

Projected Climate Change Impact on Surface Water Temperature in Korea (기후변화에 따른 지표수의 수온 영향평가)

  • Ahn, Jong Ho;Han, Dae Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.133-139
    • /
    • 2010
  • Global human activities associated with the use of fossil fuels have aggravated climate change, increasing air temperature. Consequently, climate change has the potential to alter surface water temperature with significant impacts on biogeochemical cycling and ecosystems in natural water body. In this study, we examined temporal trends on historical records of surface water temperature, and investigated the air temperature/water temperature relationship and the potential water temperature change from an air temperature scenario developed with regional climate model. Although the temporal trends of water temperature are highly variable site-by-site, surface water temperature was highly dependent on air temperature, and has increased significantly in some sub-watersheds over the last two decades. The results presented here demonstrate that water temperature changes are expected to be slightly higher in river system than reservoir systems and more significant during winter than summer for both river and reservoir system. Projected change of surface water temperature will likely increase $1.06^{\circ}C$ for rivers and $0.95^{\circ}C$ for reservoirs during the period 2008 to 2050. Given the potential climatic changes, every $1^{\circ}C$ increase in water temperature could cause dissolved oxygen levels to fall every 0.206 ppm.

Effect of HF and Plasma Treated Glass Surface on Vapor Phase-Polymerized Poly(3,4-ethylenedioxythiophene) Thin Film : Part I

  • Lee, Joonwoo;Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.6 no.4
    • /
    • pp.211-214
    • /
    • 2013
  • In this study, in order to investigate how consecutive treatments of glass surface with HF acid and water vapor/Ar plasma affect the quality of 3-aminopropyltriethoxysilane self-assembled monolayer (APS-SAM), poly(3,4-ethylenedioxythiophene) (PEDOT) thin films were vapor phase-polymerized immediately after spin coating of FeCl3 and poly-urethane diol-mixed oxidant solution on the monolayer surfaces prepared at various treatment conditions. For the film characterization, various poweful tools were used, e.g., FE-SEM, an optical microscope, four point probe, and a contact angle analyzer. The characterization revealed that HF treatment is not desirable for the synthesis of a high quality PEDOT thin film via vapor phase polymerization method. Rather, sole treatment with plasma noticeably improved the quality of APS-SAM on glass surface. As a result, a highly dense and smooth PEDOT thin film was grown on uniform oxidant film-coated APS monolayer surface.

Distribution of Surface Temperature and Chlorophyll-a in Lake Soyang using Remote Sensing Techniques (원격탐사기법에 의한 소양호의 표층수온과 엽록소 분포)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.3
    • /
    • pp.177-183
    • /
    • 2000
  • The Landsat Thematic Mapper (TM) has suggested that spatial and spectral characteristics would be suited to evaluate water quality of lake. But, TM has not been commonly used for the analysis of in-land water quality, such as surface water temperature, chlorophyll-a, suspended sediments, and Secchi depth in domestic research. This paper summarizes the analysis of Landsat 5 - TM image collected on 22 Feb 1996 for evaluation of chlorophyll-a and surface temperature in the Lake Soyang. And, field measurements collected in the Lake Soyang were used to obtain water optical algorithms for calibration of satellite data. It is concluded that we can assess chlorophyll-a with remote sensing reflectance and surface temperature with thermal band in lake Soyang. However, surface temperature calculated with thermal band of Landsat TM are underestimated. Relationship between remote sensing reflectance and chlorophyll-a using the ratio of TM band 1 and band 3 is as follows; Y = 17.206 - 6.4711 * (Rrs(band1) / Rrs(band3)) $R^2$=0.8762 and, using the ratio of TM band 1 and band 2 as follows; Y = 57.77 - 35.771 * (Rrs(band1) / Rrs(band2)) $R^2$=0.8317.

  • PDF

Calibration of Water Velocity Profile in Circular Water Channel Using Particle Image Velocimetry (PIV를 이용한 회류수조의 유속 분포 교정에 관한 연구)

  • Suh, Sung-Bu;Jung, Kwang-Hyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.23-27
    • /
    • 2011
  • This experimental study was performed to find rpms of the impeller and the surface flow accelerator to make a uniform velocity vertical distribution in the circular water channel. PIV technique was employed to measure the water velocity profiles into the water depth from the free surface. The number of instantaneous velocity profiles was decomposed into mean and turbulence velocity components, and the distribution of velocity fluctuation and turbulence intensity were computed for each experimental condition. From these results, the velocity uniformity was quantitatively determined to present the flow quality in the measuring section of the circular water channel. It has been shown that the proper operation of the surface flow accelerator would make the uniform velocity profiles and reduce the velocity fluctuation near the free surface.

Study on the Water Management to get High Quality of Drinking Water (이상적인 음료수 공급을 위한 수질관리에 관한 연구)

  • 김형석;신현덕;박경석
    • Journal of environmental and Sanitary engineering
    • /
    • v.6 no.1
    • /
    • pp.7-25
    • /
    • 1991
  • Until now, pure drinking water grnerally menas the water without taste, odor, general bacteria, coliform, and other exotic substance. Such a definition has been changing recently due to the finding of numerous other inorganic and organic substances unknown to us. 10 years ago, major causes of death were infectious agents and parasites contained in water, but recently, it has become apparent that some substances contained in drinking water cause cancer and heart diseases. We must drink about 2L of water everyday in order to maintain healthy condition. Waters used for drinking include tap water, well water, spring water, filtered water, etc., but the quality of drinking water has more polluted due to the industrial development and population increase. For example, industrial waste waters from industrial plants pollute the water supply sources ; toxic substances contained in the waste waters pollute the ground water sources by penetrating the geological strata, and municipal, livestock, public building waste waters also pollute the water supply sources. Sometimes, the polluted surface waters were announced to be polluted by various kinds of orgainc substance, and it is reported that the pollution of ground water by orga nic substances has few in number but high in its concectration comparing with those of surface water. As the water quality pollution level increases, so the amount of disinfectant also increase. For example, chlorine solution, one of widely used disinfectants, creates trihalomethane(THM), a carcinogen, and halogen compounds. According to Oliver, through chlorine disinfection process, humine substance and chlorine create bolatile organic halide and nonvolatile organic halide by chemical reaction. There are tens or hundreds filtering devices, but filtering principles and maintenance metjhods are different, so their efficiency tests are needed. According to Smith, the effeciency tests aginst over 30 Ameican filtering devices show that 10 devices can remove 85% of volatile organics and further studies on filtered waters are underway. In consideration of important impacts of polluted drinking water on national health, authors studied the state of water quality pollution against tap water used as drinking water, filtration device passed water, ground water, and conserved drinking water ; tested the efficiency of filtration devices for tap water ; tried to sep up the detection method by using ion chromatography based on negative ion and positive ion by using single column, and attemped the simple filtration method for general households.

  • PDF

Functional Characteristics of Nakdong Technique Treated on Paulownia Wood Surface

  • LEE, Chaehoon;JUNG, Hwanhee;CHUNG, Yongjae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.82-92
    • /
    • 2021
  • Nakdong technique is an unfamiliar scorching treatment using an iron heated in a kiln over 1000℃. It is a typical convention in Asian countries to treat Nakdong on the surface of paulownia species. The scorching treatment changes the surface characteristics as well as the color of the wood. This study focused on the effects of functional features such as water resistance, anti-mold, anti-termite, and sound improvement because this treatment is usually used on paulownia wood-bodied musical instruments surface. It took 28'57" for Nakdong-iron treated surface to absorb a droplet of water. The absorbance time of iron treated surface was longer than that of torch treated one. There was no noticeable effect on the anti-mold test. On the anti-termite test, there was nearly 3% more mean mass loss on the torch samples than controlled and iron treated ones. In examining the sound radiation coefficient before and after Nakdong treatment, the Nakdong-iron treated surface showed an increase in the average value of 1.2 m4/kg s, which means that it has sound quality improvement. Through this research, the Nakdong technique results are expected to be used as basic-data for further research and give a practical idea for using the traditional treatment method on the wood surface.