• Title/Summary/Keyword: surface water flow

Search Result 1,799, Processing Time 0.029 seconds

Numerical analysis of the hyporheic flow effect on solute transport in surface water (혼합대 흐름이 지표수 내 용질거동에 미치는 영향 수치모의 분석)

  • Kim, Jun Song
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • This paper performs two-dimensional numerical simulation of surface water-groundwater coupled flow and solute transport to investigate the effect of the hyporheic exchange at the sediment-water interface (SWI) on surface solute transport. For the impermeable bed case in the absence of hyporheic flow, the trapping effect of flow recirculation associated with the ripple bed controls the shape of breakthrough curves (BTCs). However, the permeable bed case with hyporheic flow stimulates the extended tailing of the BTCs more significantly due to the elevated concentration of the BTC tailing resulting from slow hyporheic velocity. Also, the increased bottom pressure at the SWI with an increase in surface velocity shortens the BTC tailing because of increasing hyporheic velocity. These results infer that hyporhiec flow is critically important in predicting solute residence times in surface water.

The Effect of Water Contact Angles of the Fin Surfaces of the Fin-and-Tube Heat Exchangers on the Water Hold-up (핀-관 열교환기에서의 핀의 물 접촉각이 응축잔수량에 미치는 영향)

  • 신종민;이남교;한성주;하삼철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.6
    • /
    • pp.490-496
    • /
    • 2001
  • An experimental study on the behavior of the water hold-up by condensation of a fin-and-tube heat exchanger with regard to the surface characteristics, i.e., contact angle, was conducted. The static and dynamic contact angles were measured, and condensation experiments were conducted. Flow patterns on the fins with different surface characteristics were visualized. Results showed that the static contact angle is proportional to the dynamic contact angle within the range of this study. The water hold-up of the heat exchanger increases as the static or dynamic contact angle of its surfaces increases. Existence of transition of flow patterns was found as the static or dynamic angle increase. Due to the transition in the flow patterns, changes in the gradient of the water hold-up is occurred around the static angle of 8$0^{\circ}C$.

  • PDF

Impacts of Nitrate in Base Flow Discharge on Surface Water Quality (질산성 질소 기저유출이 지표수 수질에 미치는 영향)

  • Kim, Geonha;Lee, Hosik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.105-109
    • /
    • 2009
  • It is a well known fact that baseflow discharge of rainfall runoff impacts on water quality of surface water significantly. In this paper, impacts of nitrate discharged as base flow on stream water quality were studied by using a software, PULSE from USGS to calculate monthly ground water discharge from hydrograph. We used water quality and flow rate data for Ghapcehon2 site in Daejeon city for year 2005 as well as ground water quality data in the watershed acquired from government agencies. Agricultural and forestry land use are dominant for upstream of Ghapcheon2 in the watershed. Base flow contributes about 85~95% of stream flows during spring and fall while 25~38% of stream flow was induced by base flow during summer and winter. Monthly nitrate loading discharged as base flow for Ghapcheon2 was estimated by using averaged nitrate concentration of groundwater in the watershed. Nitrate loading induced by base flow at Ghapcheon2 was estimated as 5.4 ton of $NO_{3}{^-}-N/km^{2}$, which is about 60% of nitrate loading of surface water, 9.2 ton of $NO_{3}{^-}-N/km^{2}$. Seasonal variation of nitrate concentration of base flow was estimated by dividing monthly nitrate loading by monthly base flow discharge. Nitrate concentration of groundwater was increasing from rainy season. From this study, it can be understood that ground water quality monitoring is important for the proper manage of surface water quality.

Impact of Bidirectional Interaction between Sewer and Surface flow on 2011 Urban Flooding in Sadang stream watershed, Korea

  • Pakdimanivong, Mary;Kim, Yeonsu;Jung, Kwansue;Li, Heng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.397-397
    • /
    • 2015
  • The frequency of urban floods is recently increased as a consequence of climate change and haphazard development in urban area. To mitigate and prevent the flood damage, we generally utilized a numerical model to investigate the causes and risk of urban flood. Contrary to general flood inundation model simulating only the surface flow, the model needs to consider flow of the sewer network system like SWMM and ILLUDAS. However, this kind of model can not consider the interaction between the surface flow and drainage network. Therefore, we tried to evaluate the impact of bidirectional interaction between sewer and surface flow in urban flooding analysis based on simulations using the quasi-interacted model and the interacted model. As a general quasi-interacted model, SWMM5 and FLUMEN are utilized to analyze the flow of drainage network and simulate the inundation area, respectively. Then, FLO-2D is introduced to consider the interaction between the surface flow and sewer system. The two method applied to the biggest flood event occurred in July 2011 in Sadang area, South Korea. Based on the comparison with observation data, we confirmed that the model considering the interaction the sewer network and surface flow, showed a good agreement than the quasi-interacted model.

  • PDF

Depressurized Circulating Water Channel Design Using CFD (수치 해석을 이용한 감압 회류 수조 설계)

  • 부경태;조희상;신수철
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.22-29
    • /
    • 2003
  • New high-speed depressurized circulating water channel was designed by using the CFD code. Flow in the channel has free surface and pressure in the test section can be depressed. In this study, Flow separation and bubble occurrence were considered in designing the contraction nozzle shape for better flow uniformity Tn the test section. To supplement velocity defect due to the free surface, nozzle injection system more effective in high-speed flow was installed instead of drum system. Necessary power and injection techniques were proposed. And guide vane arrangement was analyzed to reduce the flow resistance and keep quiet free surface from ´surging´. Wave absorber was devised to reduce the wave resistance and to prevent the entrainment of air to the diffuser.

A Study on the Variation of the Surface and Groundwater Flow System related to the Tunnel Excavation in DONGHAE Mine Area(l)-Concern on Hydrological and Rock Hydraulic Approach (동해신광산 터널굴착공사와 관련된 지표수 및 지하수의 유동변화에 대한 조사연구(l)-수문학 및 암반수리학적 접근을 중심으로)

  • 이희근;전효택;이종운;이대혁;류동우;오석영
    • Tunnel and Underground Space
    • /
    • v.5 no.4
    • /
    • pp.347-362
    • /
    • 1995
  • The purpose of this study was that manage effectively the excavation process of the transport tunnel in DONGHAE mine area by investigating the variationof the surface and groundwater flow system around the tunnel and neighbouring villages. Thus, the effect of excavation and water-prrofing process on the water system has been studied through the naked eye survey of the tunnel and the surface outcrop, joint survey, core drilling, the measurement of the surface water quantity, evapotranspiration and precipitation analysis, rock hydraulics approach, the pressure test of boreholes, the variation of the water level, and finally the numerical analysis. From above approachs, we derived the conclusion that the exhaustion of the surface water was not caused by the tunnel excavation on the groundwater system was minimized by effective water proofing process.

  • PDF

Stream flow estimation in small to large size streams using Sentinel-1 Synthetic Aperture Radar (SAR) data in Han River Basin, Korea

  • Ahmad, Waqas;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.152-152
    • /
    • 2019
  • This study demonstrates a novel approach of remotely sensed estimates of stream flow at fifteen hydrological station in the Han River Basin, Korea. Multi-temporal data of the European Space Agency's Sentinel-1 SAR satellite from 19 January, 2015 to 25 August, 2018 is used to develop and validate the flow estimation model for each station. The flow estimation model is based on a power law relationship established between the remotely sensed surface area of water at a selected reach of the stream and the observed discharge. The satellite images were pre-processed for thermal noise, radiometric, speckle and terrain correction. The difference in SAR image brightness caused by the differences in SAR satellite look angle and atmospheric condition are corrected using the histogram matching technique. Selective area filtering is applied to identify the extent of the selected stream reach where the change in water surface area is highly sensitive to the change in stream discharge. Following this, an iterative procedure called the Optimum Threshold Classification Algorithm (OTC) is applied to the multi-temporal selective areas to extract a series of water surface areas. It is observed that the extracted water surface area and the stream discharge are related by the power law equation. A strong correlation coefficient ranging from 0.68 to 0.98 (mean=0.89) was observed for thirteen hydrological stations, while at two stations the relationship was highly affected by the hydraulic structures such as dam. It is further identified that the availability of remotely sensed data for a range of discharge conditions and the geometric properties of the selected stream reach such as the stream width and side slope influence the accuracy of the flow estimation model.

  • PDF

Effects of Dams and Water Use on Flow Regime Alteration of the Geum River Basin (금강 유역의 댐과 물이용에 의한 유황의 변동특성 분석)

  • Kang, Seong-Kyu;Lee, Dong-Ryul;Moon, Jang-Won;Choi, Si-Jung
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.4
    • /
    • pp.325-336
    • /
    • 2010
  • This study presents the alteration of flow regime by effects of dams and water use in the Geum River Basin. The surface water use rate and the Impounded Runoff (IR) index were examined to assess the pressure indicators of the flow alteration. We applied the flow duration curve, flow regime coefficient, flood and low-flow frequency analysis as well as Range of Variability Approach (RVA) to investigate the quantitative changes in natural flow regimes. The results indicate that the high flow decreased and low flow increased respectively compared to the natural flow regimes at eight gauging stations. The Geum river is regulated by 139 dams and reservoirs storing 24% of the annual mean discharge and has high surface water use rate of 36%. These indicators are main pressure factors to alter flow regimes.

The Possibility of Daily Flow Data Generation from 8-Day Intervals Measured Flow Data for Calibrating Watershed Model (유역모형 구축을 위한 8일간격 유량측정자료의 일유량 확장 가능성)

  • Kim, Sangdan;Kang, Du Kee;Kim, Moon Su;Shin, Hyun Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.64-71
    • /
    • 2007
  • In this study daily flow data is constructed from 8-day intervals flow data which has been measured by Nakdong River Water Environmental Laboratory. TANK model is used to expand 8-day intervals flow data into daily flow data. Using the Sequential quadratic programing, TANK model is auto-calibrated with daily precipitation and 8-day interval flow data. Generated and measured daily surface flow, ground water flow data and ground water recharge are shown to be in a good agreement. From this result, it is thought that this method has the potential to provide daily flow data for calibrating an watershed model such as SWAT.

variation of Water Surface due to constriction in Open Channel (개수로의 단면축소로 인한 수면변화)

  • 조용준;차영기;윤태훈
    • Water for future
    • /
    • v.18 no.4
    • /
    • pp.361-367
    • /
    • 1985
  • The variation of water surface profile due to the constriction of flow section in open channel was analysed by numerical scheme. Findings are that the variations of water surface are mainly dependent on the constriction ratio and Froude number of uniform flow, and the magnitudes of backwater obtained from the flow profiles agrees fairly well with the experiments by Skogerboe. This implies that the backwater can be predicted by numerical technique.

  • PDF