• 제목/요약/키워드: surface soil stabilization

검색결과 63건 처리시간 0.022초

연약지반 표층혼합처리를 위한 조기강도 발현형 고화재의 개발 (Development of early strength type hardening Agent for Surface Soil Stabilization Method)

  • 기태경;김기훈;이병기;권오봉;김경민;박상준
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.80-81
    • /
    • 2013
  • There is the increasing number of constructing soil or structure on the soft ground during public works. Usually cement or slag cement has been the traditional material for surface soil stabilization method. Recently, early strength development properties of hardening agent is required for driving abilities of execution equipment and shortening of the construction time. Therefore, the purpose of this study is to develop the early compressive strength hardening agent for surface soil stabilization. The study was confirmed performance and availability of hardening agent using early strength type cement and industrial by-product minerals through early strength development properties in accordance with water cement ratio, content of hardening agent for soft soil.

  • PDF

연약지반 표층안정처리를 위한 고화재의 최적조합 산정에 관한 실험적 연구 (An Experimental Study on Optimal Mixture Ratio of Hardening Agent for Surface Soil Stabilization)

  • 천병식;김진춘;최현석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.17-24
    • /
    • 2000
  • Hardening agent has been the traditional material for surface soil stabilization of soft ground. This study aims at determining optimal mixture ratio of hardening agent in accordance with the required design specifications. Hardening agent is properly mixtured with Fly ash, Gypsum, Slag and Cement for the ettringite hydrates which is effective for early stabilization of unconsolidated soil. The treated soil is the clay which are widely found here and there in Korea. In this study, preliminary tests were performed to get optimal mixture ratio of stabilizer ingredient, and marine clay in Jin-Hae was used to get physical and chemical properties. Laboratory tests of 50 stabilized soil were peformed to get optimal mixture ratio for 16 stabilizer material of 6 type, and stabilizer mixing was determined.

  • PDF

해성점성토의 표층안정처리 공법에 관한 연구 (A Study on the Surface Soil Stabilization Method on Marine Clay)

  • 천병식;한기열
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 추계학술대회 논문집
    • /
    • pp.129-134
    • /
    • 2000
  • Hardening agent has been the traditional material for surface soil stabilization a sat ground This study aims at determining optimal mixture ratio of hardening agent in accordance with the required design specificutions. Hardening agent is properly mixed with Fly ash, Gyosum, Slag and Cement for the etmmngite hydrates which is dective for early stabilization of unconsoliokrred soil. \ulcornerhe treated soil is the clay tint is widely found here and there in Koresz In this study, preliminary tests were performed to get optirml mixture ratio of stabilizer ingredient, and mrvine clay in Jin-Hae was used to get physid and Md properties. Labomtory tests of 50 stabilized soil were performed to get optimal mixture mtio for 16-stabilizer merial a 6 types, a d stabilizer mixing was determined

  • PDF

고화재에 의한 해성점성토의 표층안정처리에 관한 연구 (A Study on the Surface Soil Stabilization on Marine Clay by the Hardening Agent)

  • 천병식;양진석
    • 한국해양공학회지
    • /
    • 제15권1호
    • /
    • pp.92-97
    • /
    • 2001
  • Hardening agents have been the traditional material for surface soil stabilization of soft ground. This study aims at determining the optimal mixture ratio of the hardening agent in accordance with the required design specifications. Hardening agents which consists of fly ash, gypsum, slag and cement for the ettringite hydrates is effective for early stabilization of unconsolidated soil. The raw ground material is the clay that is widely found in Korea. In this study, preliminary tests were performed to get an optimal mixture ratio of the stabilizer ingredient and marine clay from Jinhae was used to get physical and chemical properties. Laboratory tests of 50 stabilized soils were performed to get an optimal mixture ratio for 16-stabilizer materials of 6 types, and a mixture ratio of the stabilizer ingredient and marine clay was determined.

  • PDF

중금속 오염 농경지 토양의 안정화 처리공법 효과 비교 (A Comparison on the Effect of Stabilization Methods for Rice Paddies contaminated by Heavy Metal)

  • 유찬;윤성욱;박진철;이정훈;최승진;최덕용;이지민
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.819-835
    • /
    • 2009
  • In order to investigate the field application of selected stabilization methods(cover soil method, surface and total interval treatment of embankment method) on rice paddies contaminated by heavy metals, column test was carried out with heavy metal-contaminated soils collected from rice paddies around abandoned mine site. Columns were made by acrylic and filled with untreated soil, treated soil mixed with amendments(lime stone and steel refining slag) and uncontaminated cover soil according to the design report. Distilled water was discharged into the columns with the velocity of 1 pore volume/day. During test, pH, EC, and heavy metal concentration were measured in the regular term. The column test result showed that the selected stabilization methods were effective remediation method to stabilize heavy metals in paddy soils, but it was also expected that application of surface treatment methods was required the careful observation on pH variation due to the lowest increment.

  • PDF

Strength and mechanical behaviour of coir reinforced lime stabilized soil

  • Sujatha, Evangelin Ramani;Geetha, A.R.;Jananee, R.;Karunya, S.R.
    • Geomechanics and Engineering
    • /
    • 제16권6호
    • /
    • pp.627-634
    • /
    • 2018
  • Soil stabilization is an essential engineering process to enhance the geotechnical properties of soils that are not suitable for construction purposes. This study focuses on using coconut coir, a natural fibre to enhance the soil properties. Lime, an activator is added to the reinforced soil to augment its shear strength and durability. An experimental investigation was conducted to demonstrate the effect of coconut coir fibers and lime on the consistency limits, compaction characteristics, unconfined compressive strength, stress-strain behaviour, subgrade strength and durability of the treated soil. The results of the study illustrate that lime stabilization and coir reinforcement improves the unconfined compressive strength, post peak failure strength, controls crack propagation and boosts the tensile strength of the soil. Coir reinforcement provides addition contact surface, improving the soil-fibre interaction and increasing the interlocking between fibre and soil and thereby improve strength. Optimum performance of soil is observed at 1.25% coir fibre inclusion. Coir being a natural product is prone to degradation and to increase the durability of the coir reinforced soil, lime is used. Lime stabilization favourably amends the geotechnical properties of the coir fibre reinforced soil.

초연약 해성점토의 표층고화처리를 위한 최적배합에 관한 연구 (A Study on the Optimal Mixture Ratio for Stabilization of Surface Layer on Ultra-soft Marine Clay)

  • 천병식;고경환;김진춘;한유찬;문성우
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.731-738
    • /
    • 2002
  • Recently, as large constructions on the coast are performed frequently, surface layer stabilization method which Is one of the improvement methods for dredged soft clay has been applied. However, there have been few studies about the surface layer stabilization method. The purpose of this study is to clarify characteristics of ultra-soft marine clay and hardening agent. Also, optimal mixture ratio of hardening agent was verified through the laboratory tests such as statistical analysis and pilot tests. Laboratory tests were performed with proper hardening agent and test soil and standard mixing tables of hardening agent were determined according to ground conditions through statistical analysis. Also, applicability of surface layer stabilization method to field was verified by pilot tests. From the results of the tests, it was found that hardening agent materials such as cement, slag, fly-ash, inorganic salts, arwin, gypsum etc. affect on the appearing compressive strength. It was defined optimal mixture ratio which satisfies the required compressive strength from the statistical analysis. Also, It was compared the effect of ground improvement by cements and hardening agents through the pilot tests. This study will serve as data for design or construction criteria of stabilization of surface layer on ultra-soft marine clay.

  • PDF

초연약해성점성토 지반의 표층안정처리를 위한 최적고화재 배합비 산정에 관한 연구 (The Evaluation of Optimum Hardening Agent Mixture Ratio for Surface Stabilization on Extremely Soft Marine Clay)

  • 천병식;한기열
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 춘계학술대회 논문집
    • /
    • pp.408-415
    • /
    • 2001
  • Hardening agent has been the traditional material for surface soil stabilization of soft ground. The aim of this study if to determine optimal mixture ratio of hardening agent in accordance with the required design specifications. Hardening agent consists of fly ash, gypsum, slag and cement for the ettringite hydrates and if effective for early stabilization of unconsolidated soil. The raw ground material is the clay that is widely found here and there in Korea. In this study, preliminary tests were performed to get optimal mixture ratio of stabilizer ingredient and marine clay in Jinhae was used to get physical and chemical properties. Laboratory tests of 50 stabilized soils were performed to get optimal mixture ratio for 16-stabilizer materials of 6 types, and mixture ratio of stabilizer ingredient and marine clay was determined.

  • PDF

비소 및 중금속의 식물체 전이감소를 위한 철 나노 입자가 담지된 바이오차의 농경지 토양 안정화제 적용성 평가 (Stabilization of As and Heavy Metals in Farmland Soil using Iron Nanoparticles Impregnated Biochar)

  • 고일하;김정은;박소영;최유림;김동수;문덕현;장윤영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권6호
    • /
    • pp.1-10
    • /
    • 2022
  • This study assessed the feasibility of iron oxide nanoparticles impregnated with biochar (INPBC), derived from woody biomass, as a stabilizing agent for the stabilization of farmland soil in the vicinity of an abandoned mine through pot experiments with 28 days of lettuce growth. The lettuce grown in the INPBC amended soils increased by more than 100% and the concentrations of inorganic elements (Cu, Ni, Zn) decreased by more than 40%. As, Cd and Pb were not transferred properly from the soils to the lettuce biomass. The bioavailability of arsenic and heavy metals in the INPBC amended soils were decreased by 26%~50%. It seems that the major mechanisms of stabilization were arsenic adsorption on iron oxides, heavy metal precipitation by soil pH increasing and heavy metal adsorption on organic matter. These results revealed that the lower bioavailability of the inorganic pollutants in the soils stabilized using INPBC induced lower transfer to the lettuce. Thus, INPBC could be used as an amendment material for the stabilization of farmland soils contaminated by arsenic and heavy metals. However, a pre-review of the chemical properties of the amended soil must be performed prior to applying INPBC in farmland soil because the concentration of the nutrients in the soil such as available phosphates and exchangeable cations (Ca, Mg, K) could be decreased due to adsorption on the surface of the iron oxides and organic matter.

Mg-Fe 이중층수산화물로 제조한 분말상과 입상 안정화제의 비소 오염토양 안정화 기작 (Stabilization Mechanisms of Powdered and Bead Type Stabilizer Made of Mg-Fe Layered Double Hydroxide (LDH) for the Arsenic Contaminated Soil)

  • 김선희;김경태;오유나;한이경;이민희
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권4호
    • /
    • pp.49-62
    • /
    • 2022
  • The magnesium and iron-based layered double hydroxide (Mg-Fe LDH) was synthesized by the co-precipitation process and the bead type LDH (BLDH, 5~6 mm in diameter) was manufactured by using the Mg-Fe LDH and the starch as a binder. To evaluate the feasibility of the BLDH as the As stabilizer in the soil, various experiments were performed and the As stabilization efficiency of the BLDH was compared to that of powdered type LDH (PLDH, <149 ㎛ in diameter). For the As sorption batch experiment, the As sorption efficiency of both of the PLDH and the BLDH showed higher than 99%. For the stabilization experiment with soil, the As extraction reducing efficiency of the PLDH was higher than 87%, and for the BLDH, it was higher than 80%, suggesting that the BLDH has similar the feasibility of As stabilization for the contaminated soil, compared to the PLDH. From the continuous column experiments, when more than 7% BLDH was added into the soil, the As stabilization efficiency of the column maintained at over 91% for 7 pore volume flushing (simulating about 21 months of rainfall) and slowly decreased down to 64% after that time (to 36 months) under the non-equilibrium conditions. Results suggested that more than 7% of BLDH added in As-contaminated soil could be enough to stabilize As in soil for a long time. The main As fixation mechanisms on the LDH were also identified through the X-ray fluorescence (XRF), the X-ray diffraction (XRD), and the Fourier transform infrared (FT-IR) analyses. Results showed that the LDH has enough of an external surface adsorption capacity and an anion exchange capability at the interlayer spaces. Results of SEM/EDS and BET analyses also supported that the Mg-Fe LDH used in this study has sufficient porous structures and outer surfaces to fix the As. The reduction of carbonate (CO32-) and sulfate (SO42-) anions in the LDH after the reaction between As and the LDH was observed through the FT-IR, the XRF, and the XRD analyses, suggesting that the exchange of some of these anions with the arsenate (H2AsO4- or HAsO42-) occurs at the LDH interlayers during the stabilization process in soil.