• Title/Summary/Keyword: surface seawater

Search Result 551, Processing Time 0.028 seconds

Origin and Spatial Distribution of Organic Matter at Gwangyang Bay in the Fall (추계 광양만의 유기물 기원과 분포 특성)

  • Lee, Young-Sik;Kang, Chang-Keun;Choi, Yong-Kyu;Lee, Sang-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Environment factors related to the distribution of organic matter in surface seawater and sediments were investigated to estimate main pollution sources and range of their influence in Gwangyang Bay. The main pollution sources for the factors that affect organic matter distribution could be divided into three main sources: fresh water runoffs from Seomjin and Dong River, Gwangyang-si domestic sewage, and Yosu Industrial Complex. Considering the characteristics in horizontal distributions of the environmental factors in water column, sediment, and water current regime, the influencing range of these main sources was likely to be divided into three areas within the bay as follows: Area I receiving lots of fresh water from Seomjin River, Area II receiving lots of domestic sewage from Gwangyang-si and fresh water of Dong River, Area III receiving lots of materials from Yosu Industrial Complex. Area I seems to be characterized as low salinity, high concentration of $NO_3-N,\;and\;SiO_2-Si$, Area II as low salinity, high concentration of $NO_3-N,\;NH_4-N,\;and\;SiO_2-Si$, and Area III as high water temperature, high concentration of $NH_4-N,\;and\;PO_4-P$ in water column, high concentration of $NH_4-N,\;PO_4-P,\;and\;SiO_2-Si$ in surface sediments.

Effect of Freshwater Discharge on the Seawater Quality (Nutrients, Organic Materials and Trace Metals) in Cheonsu Bay (여름철 천수만 해수에서 담수 대량 방류에 따른 영양염, 유기물 및 미량금속의 변화)

  • LEE, JI-YOON;CHOI, MAN-SIK;SONG, YUNHO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.4
    • /
    • pp.519-534
    • /
    • 2019
  • When the fresh water from the artificial lakes (Ganwolho and Bunamho) were discharged to Cheonsu Bay in summer to prevent the flood over the reclaimed farmland near the lakes, the impact on water qualities (nutrients, organic matters, trace metals) within the bay was investigated through four surveys (June, July, August and October, 2011). Dissolved inorganic nitrogen (DIN) increased about as much as 3-4 times over the whole water column when the freshwater was discharged. And the main species composition of DIN changed from ammonia to nitrate. Dissolved inorganic phosphorus (DIP) decreased as much as 2 times in surface waters, but increased as much as 1.5 times in deep waters, and also silicate concentrations increased as much as 3-4 times in deep waters of the inner bay. The N/P ratios in Chunsu bay seawaters were much higher (2 to 7 times) than the Redfield ratio when the freshwaters were discharged, which indicated the phosphorus limiting in the phytoplankton growth. Dissolved organic carbon (DOC) and nitrogen (DON) increased as much as about 2 times. In addition, particulate organic matters (POC, PON, POP, Bio-Si) increased as much as above 2 times in the surface waters of the inner bay. Trace metals (Fe, Mn, Co, Ni, Cu) increased in the surface waters of the inner bay, but dissolved Cd concentrations decreased as much as 2 times. Therefore, when the contaminated fresh waters from the artificial lakes were discharged into the bay, nutrients, organic matters and trace metals generally increased compared to normal period. Since the phytoplankton bloom occurred in the surface waters of the inner bay, dissolved oxygens at the surface waters were oversaturated and hence hypoxic in the deep waters. Highly enriched nutrients concentrations were found in deep waters of the inner bay, which was accompanied with the hypoxic condition. Finally, the water quality in the inner bay of the Chunsu bay was deteriorated from less than grade 3 in normal periods to grade 5 when the freshwaters from the artificial lakes were discharged in summer.

Determination of Total CO2 and Total Alkalinity of Seawater Based on Thermodynamic Carbonate Chemistry (해수중의 총이산화탄소와 총알칼리도 분석을 위한 탄산염 화학 이론 및 측정방법)

  • Mo, Ahra;Son, Juwon;Park, Yongchul
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • To evaluate accuracy and precision of determination of total alkalinity ($Alk_T$) and carbon dioxide ($TCO_2$) derived from present study, experiment was applied with $CO_2$ CRM (Batch 132, Scripps Institution of Oceanography; $Alk_T=2229.24{\pm}0.39{\mu}mol/kg$, $TCO_2=2032.65{\pm}0.45{\mu}mol/kg$). As the result, average concentration of $Alk_T$ and $TCO_2$ was $2354.09{\mu}mol/kg$ (~5.6% difference with $CO_2$ CRM) and $2089.60{\mu}mol/kg$ (~2.3% difference with $CO_2$ CRM), respectively. For previous method (Gran Titration) by addition $NaHCO_3$ to deionized water($Alk_T$ $2023.33{\mu}mol/kg$), average concentration was $2193.39{\mu}mol/kg$ (sd=57.15, n=7). Whereas, average concentration was $2017.02{\mu}mol/kg$ (sd=10.98, n=7) for the present study. Recovery yield experiments of total alkalinity in deionized water and seawater were implemented by addition of $NaHCO_3$. The recovery yield of deionized water in the range 0 to $4952.39{\mu}mol/kg$ was 100.8% ($R^2$=0.999), and seawater in the range 0 to $2041.32{\mu}mol/kg$ was 102.3% ($R^2$=0.999). Comparison of $pCO_2$ sensor (PSI $CO_2-Pro^{TM}$) with present method showed very meaningful correlation coefficient ($R^2$=0.977) in the range of 427 to $705{\mu}atm$ and 9.16 to $15.24{\mu}mol/kg$ throught elapsed time for two weeks. Field experiment of diurnal variation of total carbon dioxide was accomplished at Sachon harbor in the coastal waters of East Sea of Korea. Concentration of $Alk_T$ and $TCO_2$ was increased during night, and decreased during daylight hours. The results showed mirror type between $TCO_2$ and dissolved oxygen, which was attributable to photosynthesis and respiration of phytoplankton. Also, open ocean field study was performed to obtain vertical profile of $Alk_T$ and $TCO_2$ in C-C zone (Clarion-Clipperton Fracture Zone), Northeastern Pacific. Average concentrations of $Alk_T$ in the surface mixed layer (0~60 m) and deeper layer below 200 m were $2422.38{\mu}mol/kg$ (sd=78.73, n=20) and $2465.87{\mu}mol/kg$ (sd=57.68, n=103), respectively. And average concentrations of $TCO_2$ were $2134.47{\mu}mol/kg$ (sd=65.4, n=20) and $2431.87{\mu}mol/kg$ (sd=65.02, n=103) in the same depth ranges such as $Alk_T$. Vertical distributions of $Alk_T$ and $TCO_2$ concentrations tended to increase with depth, and analyzed concentrations showed slightly higher than those of previous studies in this area.

Spatial Distribution of Transparent Exopolymer Particles(TEP) and Their Relation to Carbon Species in the Euphotic Layer of the Northern East Sea (동해 북부해역 유광층에서 TEP 분포와 이산화탄소 인자와의 상호관련성)

  • Jeon, Hyun-Duck;Rho, Tae-Keun;Lee, Tong-Sup
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.2
    • /
    • pp.33-44
    • /
    • 2012
  • Transparent exopolymer particles (TEP) are formed by aggregation of polysaccharide products excreted by phytoplankton and have sticky character like gel. They play important role in the production of marine snow in water column. To study the distribution pattern of TEP concentration and its role in carbon cycle in the surface ocean, we measured pH, Total alkalinity (TA), and chlorophyll-a in addition to physical characteristics of seawater within the surface water column. TEP concentrations ranged from nearly undetectable values to $338{\mu}g\;Xeq\;l^{-1}$. They were considerably lower than previously reported values from costal sites, but showed similar values observed in other oceanic region during phytoplankton bloom periods. The spatial distribution of TEP concentrations were similar to those of chlorophyll-a, which indicate that the production of TEP were closely related to phytoplankton. Calculated total dissolved inorganic carbon ($TCO_2$) from the pH and TA was normalized to 35 psu of salinity ($NTCO_2$) and showed negative linear relationship with temperature. Biological drawdown of $NTCO_2$ ($NTCO_{2bio}$) was estimated from the difference between theoretical $NTCO_2$ values and observed $NTCO_2$. In the warm region located south of $40^{\circ}N$ along the $132.5^{\circ}N$ meridional lines, $NTCO_{2bio}$ showed negative value and TEP concentrations were high. This suggested that negative $NTCO_{2bio}$ may be attributed to the biological processes. At the stations located between 44 and $46^{\circ}N$, TEP concentrations showed high concentration at the chlorophyll-a maximum layer within the water column while they showed low concentration in the surface layer. Carbon content of TEP constituted about 40% of $NTCO_{2bio}$ at the chlorophylla maximum layer. In this study, we could not observe any positive and negative relationship between TEP concentration and $NTCO_2$ or pH. It is obvious that we should consider the importance of TEP in the biological carbon cycling processes within surface layer.

Distributions of Dissolved Pb and Cd in the Surface Water of East Sea, Korea (동해 표층수중 용존 Pb, Cd의 분포 특성)

  • Yoon, Sang Chol;Yoon, Yi Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.64-73
    • /
    • 2015
  • The distributions of Pb and Cd concentrations in the surface seawater of the East Sea were investigated during the R/V Lavrentyev cruise (July 2009) in which four transects from Russia shore to South were conducted to collect 26 surface water samples. The total dissolved concentrations of Pb and Cd were measured using ICP-MS (Perkin Elmer, DRC-e). In the coastal area, their concentrations of Russia shore (Pb, 0.08; Cd, 0.10 nM) were comparable for Cd but on the other hand, 6 times lower for Pb than Korea shore (Pb, 0.49; Cd, 0.11 nM). In the subregion, their concentrations of Warm region (Pb, 0.22; Cd, 0.01 nM) were about 1.7 times higher for Pb but 0.4 lower for Cd than Cold region (Pb, 0.13; Cd, 0.14 nM). The distributions of Pb and Cd concentrations were divided by lowest level at $10^{\circ}C$ of water temperature. Below $10^{\circ}C$, Pb and Cd concentrations increased when surface water temperatures decreased. Above $10^{\circ}C$, their concentrations increased with temperature, which showed highest concentrations in the Ulleung basin, directly influenced by flux from East Korean Warm Current and neighboring countrys (Korea and Japan). Specially, in the case of Pb, the concentrations decrease remarkablely with temperatures decrease from D10 directly influenced by flux from East Korean Warm Current, which shows highest Pb level. By comparing with other sea areas (Western Mediterranean, East Pacific), Pb concentrations in the East Sea were a little higher. The influence of East Korean Warm Current and neighboring countrys (Korea and Japan) may be relatively important. Therefore, the distribution of Cd may primarily be influenced by mixing of different water masses while the distribution of Pb may mainly be influenced by flux from East Korean Warm Current and atmospheric inputs. River inputs and interaction with particulate materials may also some roles for the distribution of these elements.

The Physico-chemical Characteristics in the Garorim Bay, Korea (가로림만의 이화학적 수질의 시.공간적 특성)

  • Nam, Hyun-Jun;Heo, Seung;Park, Seung-Yun;Hwang, Un-Ki;Park, Jong-Soo;Lee, Hae-Kwang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.2
    • /
    • pp.101-114
    • /
    • 2012
  • The physico-chemical characteristics including water temperature, salinity, dissolved oxygen(DO), chemical oxygen demand (COD), chlorophyll-a(Chl. a), suspended particulate matter(SPM) and dissolved inorganic nutrients were investigated in the Garolim Bay, Yellow Sea, Korea in 2010 carried out six times per year at 11 fixed stations by Korea Fisheries Research & Development Institute. The water temperature, salinity, COD, dissolved inorganic nutrients, Chl. a and SPM showed significant difference between surface and bottom water but the other parameters didn't. There were not significant difference between stations. The water temperature showed typical change patterns of the temperate seawater. The annual average of salinity showed more than 31 so that there could not have occurred low saline water. The average of DO from June to August showed over than 3mg/L which showed higher than the below standard value of the hypoxic (oxygen-deficient) water. The average of Chl. a varied $1.68{\mu}g/L$ at surface, $2.38{\mu}g/L$ at bottom layer in June and $1.68{\mu}g/L$ at surface, $1.57{\mu}g/L$ at bottom layer at August. The dissolved inorganic nutrients showed high concentration in February and low concentration in August due to the limitation of the freshwater input in summer and phytoplankton used to the dissolved inorganic nutrients. The ratio of DIN/DIP showed 30.52 at surface and 37.89 at bottom layer in June which was higher than other month. The SPM was 44.15mg/L at bottom layer in February which was the highest value in this study due to the northwest monsoon. Because of the actively water change in the open sea without inflow of freshwater from land in Garolom Bay, there were not occurred low saline water and hypoxic water. thus, this Bay showed good water quality and required to be conserved continuously as important costal area for fisheries.

Application of Geostatistical Methods for the Analysis of Groundwater Contamination in Pusan (부산지역 지하수 오염현황 분석을 위한 지구통계 기법의 응용)

  • 정상용;강동환;박희영;심병완
    • The Journal of Engineering Geology
    • /
    • v.10 no.3
    • /
    • pp.247-261
    • /
    • 2000
  • The geostatistical analyses for the chemical components of pH, TS, KMnO4 Demand, Cl, SO$_4$ and NO$_3$-N are carried out to understand the groundwater contamination in Pusan. The average values of each component are 7.2 for pH, 336.4mg/$\ell$ for TS, 2.3mg/$\ell$ for KMnO$_4$ Demand, 44.3mg/$\ell$ for Cl, 36.0mg/$\ell$ for SO$_4$, and 4.6mg/$\ell$ for NO$_3$-N. The ratios over the drinking standard of each component are 0.34% for pH, 2.27% for TS, 1.55% for KMnO$_4$ Demand, 1.59% for Cl, 0.57% for SO$_4$, and 3.7% for NO$_3$-N. The highest ratio of NO$_3$-N results from the municipal sewage and exhaust gas of vehicles. The isopleth maps of 6 chemical components show that the high values of groundwater contamination come from the inland of Pusan, and that some high values appear at the coastal area. The isopleth maps of Cl and SO$_4$ related with seawater intrusion also show that the high values appear only at the particular coastal area, not at the whole area. On the isopleth maps of Cl and SO$_4$, the anomalies of the concentration contours were compared with the directions of two large fault zones, the Ilkwang Fault and the Dongrae Fault. Apparently, they don't have the particular correlation. Therefore, it is concluded that the main source of groundwater contamination in Pusan is not the seawater, but the municipal sewage and other sources such as the exhaust gas of vehicles, the contaminated surface water, the waste water of factories, and the leachate of waste landfills.

  • PDF

Temporal and Spatial Variations of Particulate Organic Matter in the Southeastern Coastal Bays of Korea (한반도 남동 연안내만 입자유기물질의 시$\cdot$공간 변동 특성)

  • LEE Pil-Yong;KANG Chang-Keun;CHOI Woo-Jeung;LEE Won-Chan;YANG Han-Soeb
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.1
    • /
    • pp.57-69
    • /
    • 2001
  • The chemical, elemental and biochemical components of the suspended particulate matter (SPM) were investigated in order to quantify particulate organic matter (POM) and assess diet quality for suspension feeders in the southern coastal bay systems of Korea where the marine farming of the suspension feeders are most active, The intense field observation program was carried out seasonally in the three coastal bay systems of Chinhae, Gosung and Kangjin bays, The SPM was characterized as collective properties of organic carbon (POC), nitrogen (PON), phosphorus (PP) and more refined collective properties of protein (PPr), carbohydrate (PCHO) and chlorophyll a (Chl a) compound. Although the three coastal bays are regarded as phytoplankton based ecosystem, the SPM is not composed entirely with phytoplankton cells. Due to the shallow water depth, resuspension of bottom sediment contributes significantly to some of the regions. Therefore, concentration of SPM in the surface water did not co-vary with Chl a or PPr, PCHO. In general, temporal variation of POC, PON and Chl a contents in seawater were closely associated with phytoplankton biomass in the three coastal bays, However, PPr and PCHO contents in seawater were higher in Chinhae bay than in Gosung and Kangjin bays and Chl a PPr-N ratio was higher in Chinhae bay than in Kosung and Kangjin bays, since Chinhae bay is more eutrophicated than other bays. Average C : N ratios from regressions of POC and PON of SPM were 6.6, 6.6 and 5.0 in Chinhae, Gosung and Kangjin bays, respectively. SPM in Chinhae and Gosung bays appears to be made of largely phytoplankton cells and SPM in Kangjin bay appears to be contributed from the bacterial biomass due to the shallow water depth. N : P ratios from regressions of PON and PP of SPM were 10.8 and 14.7 in spring, and 18.2 and 24.6 in Chinhae and Gosung bays, respectively. With respect to the hypothetical Redfield molecule, phytoplankton appears to be limited by the lack of N and f in spring and summer, respectively, in the two bays, In Kangjin bay, N : P ratios from regressions of PON and PP of SPM were varied from 6.3 to 12.8 throughout the year. The low N : P ratio with resepct to the hypothetical Redfield molecule, phytoplankton growth appears to be limited by the lack of N-nutrients.

  • PDF

Effect of Freshwater Discharge from a Water Reservoir on the Flow Circulation in the Semi-Closed Harbor (유수지로부터의 담수 방류가 항 내 해수순환에 미치는 영향)

  • Choi, Jae Yoon;Kim, Jong Wook;Lee, Hye Min;Yoon, Byung Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • To investigate the effect of freshwater discharge on the seawater circulation in the semi-closed harbor, a 3-D hydrodynamic model was applied to the International Ferry Terminal (IFT). The model run is conducted for 45 days (from May 15 to June 30, 2020), and the reproducibility of the model for time-spatial variability of current velocity and salinity was verified by comparison with model results and observation data. There are two sources of freshwater towards inside of the IFT: Han River and water reservoir located in the eastern part of IFT. In residual current velocity results, the two-layer circulation (the seaward flow near surface and the landward flow near bottom)derived from the horizontal salinity gradient in only considering the discharge from a Han River is more developed than that considering both the Han River and water reservoir. This suggests that the impact of freshwater from the reservoir is greater in the IFT areas than that from a Han River. Additionally, the two-layer circulation is stronger in the IFT located in southern part than Incheon South Port located in northern part. This process is formed by the interaction between tidal current propagating into the port and freshwater discharge from a water reservoir, and flow with a low salinity (near 0 psu) is delivered into the IFT. This low salinity distribution reinforces the horizontal stratification in front of the IFT, and maintains a two-layer circulation. Therefore, local sources of freshwater input are considered to estimate for mass transport process associated with the seawater circulation within the harbor and It is necessary to perform a numerical model according to the real-time freshwater flow rate discharged.

Misconception on the Yellow Sea Warm Current in Secondary-School Textbooks and Development of Teaching Materials for Ocean Current Data Visualization (중등학교 교과서 황해난류 오개념 분석 및 해류 데이터 시각화 수업자료 개발)

  • Su-Ran Kim;Kyung-Ae Park;Do-Seong Byun;Kwang-Young Jeong;Byoung-Ju Choi
    • Journal of the Korean earth science society
    • /
    • v.44 no.1
    • /
    • pp.13-35
    • /
    • 2023
  • Ocean currents play the most important role in causing and controlling global climate change. The water depth of the Yellow Sea is very shallow compared to the East Sea, and the circulation and currents of seawater are quite complicated owing to the influence of various wind fields, ocean currents, and river discharge with low-salinity seawater. The Yellow Sea Warm Current (YSWC) is one of the most representative currents of the Yellow Sea in winter and is closely related to the weather of the southwest coast of the Korean Peninsula, so it needs to be treated as important in secondary-school textbooks. Based on the 2015 revised national educational curriculum, secondary-school science and earth science textbooks were analyzed for content related to the YSWC. In addition, a questionnaire survey of secondary-school science teachers was conducted to investigate their perceptions of the temporal variability of ocean currents. Most teachers appeared to have the incorrect knowledge that the YSWC moves north all year round to the west coast of the Korean Peninsula and is strong in the summer like a general warm current. The YSWC does not have strong seasonal variability in current strength, unlike the North Korean Cold Current (NKCC), but does not exist all year round and appears only in winter. These errors in teachers' subject knowledge had a background similar to why they had a misconception that the NKCC was strong in winter. Therefore, errors in textbook contents on the YSWC were analyzed and presented. In addition, to develop students' and teachers' data literacy, class materials on the YSWC that can be used in inquiry activities were developed. A graphical user interface (GUI) program that can visualize the sea surface temperature of the Yellow Sea was introduced, and a program displaying the spatial distribution of water temperature and salinity was developed using World Ocean Atlas (WOA) 2018 oceanic in-situ measurements of water temperature and salinity data and ocean numerical model reanalysis field data. This data visualization materials using oceanic data is expected to improve teachers' misunderstandings and serve as an opportunity to cultivate both students and teachers' ocean and data literacy.