Browse > Article
http://dx.doi.org/10.7850/jkso.2012.17.2.033

Spatial Distribution of Transparent Exopolymer Particles(TEP) and Their Relation to Carbon Species in the Euphotic Layer of the Northern East Sea  

Jeon, Hyun-Duck (Division of Polar and Climate Research, KOPRI)
Rho, Tae-Keun (Division of Earth Environmental System, Pusan National University)
Lee, Tong-Sup (Division of Earth Environmental System, Pusan National University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.17, no.2, 2012 , pp. 33-44 More about this Journal
Abstract
Transparent exopolymer particles (TEP) are formed by aggregation of polysaccharide products excreted by phytoplankton and have sticky character like gel. They play important role in the production of marine snow in water column. To study the distribution pattern of TEP concentration and its role in carbon cycle in the surface ocean, we measured pH, Total alkalinity (TA), and chlorophyll-a in addition to physical characteristics of seawater within the surface water column. TEP concentrations ranged from nearly undetectable values to $338{\mu}g\;Xeq\;l^{-1}$. They were considerably lower than previously reported values from costal sites, but showed similar values observed in other oceanic region during phytoplankton bloom periods. The spatial distribution of TEP concentrations were similar to those of chlorophyll-a, which indicate that the production of TEP were closely related to phytoplankton. Calculated total dissolved inorganic carbon ($TCO_2$) from the pH and TA was normalized to 35 psu of salinity ($NTCO_2$) and showed negative linear relationship with temperature. Biological drawdown of $NTCO_2$ ($NTCO_{2bio}$) was estimated from the difference between theoretical $NTCO_2$ values and observed $NTCO_2$. In the warm region located south of $40^{\circ}N$ along the $132.5^{\circ}N$ meridional lines, $NTCO_{2bio}$ showed negative value and TEP concentrations were high. This suggested that negative $NTCO_{2bio}$ may be attributed to the biological processes. At the stations located between 44 and $46^{\circ}N$, TEP concentrations showed high concentration at the chlorophyll-a maximum layer within the water column while they showed low concentration in the surface layer. Carbon content of TEP constituted about 40% of $NTCO_{2bio}$ at the chlorophylla maximum layer. In this study, we could not observe any positive and negative relationship between TEP concentration and $NTCO_2$ or pH. It is obvious that we should consider the importance of TEP in the biological carbon cycling processes within surface layer.
Keywords
Tranparent exopolymer particles; TEP; $TCO_2$; Carbon cycle; East sea;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alldredge, A.L. and P. Mcgillivary, 1991. The attachment probabilities of marine snow and their implications for particle coagulation in the ocean. Deep-Sea Res. I, 38: 431-443.   DOI   ScienceOn
2 Alldredge, A.L., U. Passow and B.E. Logan, 1993. The abundance and significance of a class of large, transparent organic particles in the ocean. Deep-Sea Res., 40: 1131-1140.
3 Arrigo, K.R., 2007. Marine manipulations. Nature, 450: 491-492.   DOI   ScienceOn
4 Asper, V.L.W., G. Deuser, G.A. Knauer and S.E. Lorenz, 1992. Rapid coupling of sinking particle fluxes between surface and deep ocean waters. Nature, 357: 670-672.   DOI
5 Boyd, P.W., R. Strzepek, S. Takeda, G.A. Jackson, C.S. Wong, R.M. McRay, C. Law, H. Kiyosawa, H. Saito, N. Sherry, K. Johnson, J. Gower and N. Ramaiah, 2005. The evolution and termination of an iron-induced mesoscale bloom in the northeast subarctic Pacific. Limnol. Oceanogr., 50: 1872-1886.   DOI
6 Chin, W.C., M.V. Orellana and P. Verdugo, 1998. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature, 391: 568-572.   DOI   ScienceOn
7 Claquin, P., I. Probert, S. Lefebvre and B. Veron, 2008. Effects of temperature on photosynthetic parameters and TEP production in eight species of marine microalgae. Aquat. Microb. Ecol., 51(1): 1-11.   DOI   ScienceOn
8 Clayton, T. and R.H. Byrne, 1993. Spectrophotometric seawater pH measurements : total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep-Sea Res. I, 40: 2115- 2129.   DOI   ScienceOn
9 Corzo, A., S. Rodriguez-Galvez, L. Lubian, P. Sangra, A. Martnez and J.A. Morillo, 2005. Spatial distribution of transparent exopolymer particles in the Bransfield Strait. Antarctica. J Plankton Res., 27(7): 635-646.   DOI   ScienceOn
10 Dam, H.G. and D.T. Drapeau, 1995. Coagulation efficiency, organicmatter glues, and the dynamics of particles during a phytoplankton bloom in a mesocosm study. Deep-Sea Res. II, 42: 111-123.   DOI   ScienceOn
11 Decho, A.W., 1990. Microbial exopolymer secretions in ocean environments: Their role(s) in food web and marine processes. Oceanography and Marine Biology Annual Review, 28: 73-153.
12 Engel, A., 2000. The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (alpha) during the decline of a diatom bloom. J. Plank. Res., 22: 485-497.   DOI   ScienceOn
13 Engel, A., 2002. Direct relationship between $CO_{2}$ uptake and transparent exopolymer particles production in natural phytoplankton. J. Plank. Res., 24: 49-54.   DOI   ScienceOn
14 Engel, A., 2004. Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes. Deep-Sea Res., 51(1): 83-92.   DOI   ScienceOn
15 Engel, A., M. Meyerhfer and K. Von Brckel, 2002. Chemical and biological composition of suspended particles and aggregates in the Baltic Sea in summer 1999. Estuar. Coast Shelf Sci., 55: 729- 741.   DOI   ScienceOn
16 Engel, A., and U. Passow, 2001. Carbon and nitrogen content of transparent exopolymer particles (TEP) in relation to their Alcian Blue adsorption. Mar. Ecol. Prog. Ser., 219: 1-10.   DOI
17 Engel, A., S. Thoms, U. Riebesell, E. Rochelle-Newall and I. Zondervan, 2004. Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature, 428: 929-932.   DOI   ScienceOn
18 Grossart, H.P. and M. Simon, 1997. Formation of macroscopic organic aggregates (lake snow) in a large lake: The significance of transparent exopolymer particles, phytoplankton, and zooplankton. Limnol. Oceanogr., 42, 1651-1659.   DOI
19 Feely, R.A., C.L. Sabine, K. Lee, W. Berelson, J. Kleypas, V.J. Fabry and F.J. Millero, 2004. Impact of anthropogenic $CO_{2}$ on the $CaCO_{3}$ system in the oceans. Science, 305: 362-366.   DOI   ScienceOn
20 Fowler, S.W. and G.A. Knauer, 1986. Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog. Oceanogr., 16: 147-194.   DOI   ScienceOn
21 Hong, Y., W.O. Smith and A.M. White, 1997. Studies on transparent exopolymer particles (TEP) produced in the Ross Sea (Antarctica) and by Phaeocystis antarctica (Prymnesiophyceae). J. Phycol., 33(3): 368-376.   DOI   ScienceOn
22 Jackson, G.A. and A.B. Burd, 1998. Aggregation in the marine environment. Environ. Sci. Tech., 32: 2805-2814.   DOI   ScienceOn
23 Jackson, G.A., A.M. Waite and P.W. Boyd, 2005. Role of algal aggregation in vertical carbon export during SOIREE and in other low biomass environments. Geophys. Res. Lett., 32, L13607, doi:10.1029/2005GL023180.   DOI   ScienceOn
24 Kepkay, P., 2000. Colloids and the ocean carbon cycle. In: Wangersky P (ed) The Handbook of environmental chemistry, vol. 5. Berlin, Springer verlag. pp. 35-56.
25 Kim, J.-M., K. Lee, K. Shin, E.J. Yang, A. Engel, D.M. Karl and H.- C. Kim, 2011. Shifts in biogenic carbon flow from particulate to dissolved forms under high carbon dioxide and warm ocean conditions. Geophys. Res. Lett., 38: L08612, doi:10.1029/ 2011GL047346.   DOI   ScienceOn
26 Kiorboe, T., K.P. Andersen, H.G. Dam, 1990. Coagulation efficiency and aggregate formation in marine phytoplankton. Mar. Biol., 107: 235-246.   DOI
27 Lueker, T.J., A.G. Dickson and C.D. Keeling, 2000. Ocean p$CO_{2}$ calculated from dissolved inorganic carbon, alkalinity, and equations for $K_{1}$ and $K_{2}$: validation based on laboratory measurements of $CO_{2}$ in gas and seawater at equilibrium. Mar. Chem., 70: 105-119.   DOI   ScienceOn
28 Kloareg, B. and R.S. Quatrano, 1988. Structure of cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanography and Marine Biology Annual Review, 26: 259-315.
29 Lorenzen, C.J., 1966. A method for the continuous measurement of in vivo chlorophyll concentration. Deep-Sea Res. I, 13: 223-227.
30 Logan, B.E., U. Passow, A.L. Alldredge, H.-P. Grossart and M. Simon, 1995. Rapid formation and sedimentation of large aggregates is predictable from coagulation rates (half-lives) of transparent exopolymer particles (TEP). Deep-Sea Res. II, 42: 203- 214.   DOI   ScienceOn
31 Mari, X., 2008. Does ocean acidification induce an upward flux of marine aggregates? Biogeosciences, 5(4): 1023-1031.   DOI
32 Mari, X. and A. Burd, 1998. Seasonal size spectra of transparent exopolymeric particles (TEP) in a coastal sea and comparison with those predicted using coagulation theory. Mar. Ecol. Prog. Ser., 163: 63-76.   DOI
33 Mari, X. and T. Kiørboe, 1996. Abundance, size distribution and bacterial colonization of transparent exopolymer particles (TEP) in the Kattegat. J. Plank. Res., 18: 969-986.   DOI   ScienceOn
34 Millero, F.J., J.Z. Zhang, K. Lee and D.M. Campbell, 1993. Titration alkalinity of seawater. Mar. Chem., 44: 153-165.   DOI   ScienceOn
35 Mopper, K., J. Zhou, K.S. Ramana, U. Passow, H.G. Dam and D.T. Drapeau, 1995. The role of surface-active carbohydrates in the flocculation of a diatom bloom in a mesocosm. Deep-Sea Res. II, 42: 47-73.   DOI   ScienceOn
36 Passow, U., 2002. Transparent exopolymer particles (TEP) in aquatic environments. Prog. Oceanogr., 55: 287-333.   DOI   ScienceOn
37 Obernosterer, I. and G.J. Herndl, 1995. Phytoplankton extracellular release and bacterial growth: dependence on inorganic N:P ratio. Mar. Ecol. Prog. Ser., 116: 247-257.   DOI
38 Ortega-Retuerta, E., I. Reche, E. Pulido-Villena, S. Augusti and C.M. Duarte, 2009. Uncoupled distributions of transparent exopolymer particles (TEP) and dissolved carbohydrates in the Southern Ocean. Mar. Chem., 115: 59-65.   DOI   ScienceOn
39 Park, G.H., K. Lee, and P. Tishchenko, 2008. Sudden, considerable reduction in recent uptake of anthropogenic $CO_{2}$ by the East/Japan Sea. Geophys. Res. Lett., 35: L23611, doi:10.1029/2008GL036118.   DOI   ScienceOn
40 Passow, U. and A.L. Alldredge, 1994. Distribution, size, and bacterial colonization of transparent exopolymer particles (TEP) in the ocean. Mar. Ecol. Prog. Ser., 113: 185-198.   DOI
41 Passow, U. and A.L. Alldredge, 1995. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP). Limnol. Oceanogr., 40: 1326-1335.   DOI
42 Passow, U., W. Kozlowski and M. Vernet, 1995. Distribution of Transparent Exopolymer Particles (TEP) during summer at a permanent station in Antarctica. Antarct. J. US, 30: 265-266.
43 Passow, U., R.F. Shipe, A. Murray, D.K. Pak, M.A. Brzezinski and A.L Alldredge, 2001. The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter. Cont. Shelf Res., 21: 327-346.   DOI   ScienceOn
44 Penna, A., S. Bertuli, N. Penna and M. Magnani, 1999. Influence of nutrient ratios on the in vitro extracellular polysaccharide production by marine diatoms from the Adriatic Sea. J. Plank. Res., 21: 1681-1690.   DOI
45 Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wannikhof, C.S. Wong, D.W.R. Wallace, B. Tilbrook, F.J. Millero, T.H. Peng, A. Kozyr, T. Ono and A.F. Rios, 2004. The oceanic sink for anthropogenic $CO_{2}$. Science, 305: 367-371.   DOI   ScienceOn
46 Prieto, L., G. Navarro, A. Cozar, F. Echevarria and C.M. Garcia, 2006. Distribution of TEP in the euphotic and upper mesopelagic zones of the southern Iberian coasts. Deep-Sea Res. II, 53(11-13): 1314-1328.   DOI   ScienceOn
47 Ramaiah, N., T. Yoshikawa and K. Furuya, 2001. Temporal variation in transparent exopolymer particles (TEP) associated with a diatom spring bloom in a subarctic Ria in Japan. Mar. Ecol. Prog. Ser., 212: 79-88.   DOI
48 Riebesell, U., K.G. Schulz, R.G.J. Bellerby, M. Botros, P. Fritsche, M. Meyerhofer, C. Neill, G. Nondal, A. Oschlies, J. Wohlers and E. Zollner, 2007. Enhanced biological carbon consumption in a high $CO_{2}$ ocean. Nature, 450: 545-548.   DOI   ScienceOn
49 Shanks, A.L. and J.D. Trend, 1980. Marine snow, sinking rates and potential role in vertical flux. Deep-Sea Res. I, 27: 137-143.   DOI   ScienceOn
50 Smetacek, V.S., 1985. Role of sinking in diatom life-history cycles: Ecological, evolutionary, and geological significance. Mar. Biol., 84: 239-251.   DOI
51 Takahashi, T., J. Olafsson, J. Goddard, D.W. Chipman and S.C. Sutherland, 1993. Seasonal variation of $CO_{2}$ and nutrients in the highlatitude surface oceans. Glob. Biogeochem. Cycles, 7: 843-878.   DOI
52 Tanaka, T., 1992. Phase transitions of gels. ACS Symp. Ser., 480: 1- 21.
53 Volk, T. and M.I. Hoffert, 1985. The Carbon Cycle and Atmospheric $CO_{2}$: Natural Variations Archean to Present In: Sundquist ET, Broecker WS (eds) American Geophysical Union, Washington, pp. 99-110.
54 Waite, A.M., Olson, R.J., Dam, H.G. and U. Passow, 1995. Sugarcontaining compounds on the cell surfaces of marine diatoms measured using concanavalin A and flow cytometry. J. Phycol., 31: 925-933   DOI