• 제목/요약/키워드: surface sea water

검색결과 1,409건 처리시간 0.028초

A Seasonal Circulation in the East China Sea and the Yellow Sea and its Possible Cause

  • Oh, Kyung-Hee;Pang, Ig-Chan
    • Journal of the korean society of oceanography
    • /
    • 제35권4호
    • /
    • pp.161-169
    • /
    • 2000
  • A seasonal circulation in the East China Sea and the Yellow Sea and its possible cause have been studied with CSK data during 1965-1989. Water mass distributions are clear in winter, but not in summer because the upper layer waters are quite influenced by atmosphere. To solve the problem, a water mass analysis by mixing ratio is used for the lower layer waters. The results show that the distribution of Tsushima Warm Current Water expands to the Yellow Sea in winter and retreats to the East China Sea in summer. It means that there is a very slow seasonal circulation between the East China Sea and the Yellow Sea: Tsushima Warm Current Water flows into the Yellow Sea in winter and coastal water flows out of the Yellow Sea in summer. By the circulation, the front between Tsushima Warm Current Water and coastal water moves toward the shelf break in summer so that the flow is faster in the deeper region. The process eventually makes the transport in the Korea Strait increase. The Kuroshio does not seem to influence the process. A possible mechanism of the process is the seasonal change of sea surface slope due to different local effects of surface heating and diluting between the East China Sea and the Yellow Sea.

  • PDF

동해고유수의 생성가능해역 I. 극전선에 의한 해역구분 (Possible Formation Area of the Japan Sea Proper Water I. Subareas by the Polar Front)

  • 최용규;양성기
    • 한국환경과학회지
    • /
    • 제2권1호
    • /
    • pp.27-42
    • /
    • 1993
  • Based on the Results of Marine Meteorological and Oceanographical Observations during 1966∼1987 and the Ten-day Marine Report during 1970∼1989 by Japan Meteorological Agency, the possible area where the Japan Sea Proper Water (JSPW) can be formed is investigated by analyzing the distribution of water types in the Japan Sea. The Japan Sea can be divided into three subareas of Northern Cold Water(NCW), Polar Front(PF) and Tsushima Warm Current (TWC) by the Polar Front identified by a 6℃ isothermal line at the sea surface in vinter. Mean position of the Polar Front is approximately parallel to the latitude 39∼40。N. The standard deviation of the Polar Front from the mean position of about 130km width is the smallest in the region between 136。E and 138。E where the Polar Front is very stable, because the branches of the Tsushima Current are converging in this region. However, standard deviations are about 180∼250km near the Korean peninsula and the Tsugaru Strait due to greater variability of warm currents. In the NCW area north of 40∼30。N and west of 138。E, the water types of the sea surface to the loom depth are similar to those of the JSPW. This fact indicates that the surface layer of the NCW area is the possible region of the JSPW formation in winter.

  • PDF

Pacific Equatorial Sea Surface Temperature Variation During the 2015 El Niño Period Observed by Advanced Very-High-Resolution Radiometer of NOAA Satellites

  • Lee, Seongsuk;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권2호
    • /
    • pp.105-109
    • /
    • 2018
  • El $Ni{\tilde{n}}o$ is the largest fluctuation in the climate system, and it can lead to effects influencing humans all over the world. An El $Ni{\tilde{n}}o$ occurs when sea surface temperatures in the central and eastern tropical Pacific Ocean become substantially higher than average. We investigated the change in sea surface temperature in the Pacific Ocean during the El $Ni{\tilde{n}}o$ period of 2015 and 2016 using the advanced very-high-resolution radiometer (AVHRR) of NOAA Satellites. We calculated anomalies of the Pacific equatorial sea surface temperature for the normal period of 1981-2010 to identify the variation of the 2015 El $Ni{\tilde{n}}o$ and warm water area. Generally, the warm water in the western tropical Pacific Ocean shifts eastward along the equator toward the coast of South America during an El $Ni{\tilde{n}}o$ period. However, we identified an additional warm water region in the $Ni{\tilde{n}}o$ 1+2 and Peru coastal area. This indicates that there are other factors that increase the sea surface temperature. In the future, we will study the heat coming from the bottom of the sea to understand the origin of the heat transport of the Pacific Ocean.

Landsat TM과 MODIS 영상을 이용한 새만금해역 표층수온 변화 탐지 (The Change Detection of SST of Saemangeum Coastal Area using Landsat and MODIS)

  • 정종철
    • 환경영향평가
    • /
    • 제20권2호
    • /
    • pp.199-205
    • /
    • 2011
  • The Saemangeum embankment construction have changed the flowing on the topography of the coastal marine environment. However, the variety of ecological factors are changing from outside of Saemangeum embankment area. The ecosystem of various marine organisms have led to changes by sea surface temperature. The aim of this study is to monitoring of sea surface temperature(SST) changes were measured by using thermal infrared satellite imagery, MODIS and Landsat. The MODIS data have the high temporal resolution and Landsat satellite data with high spatial resolution was used for time series monitoring. The extracted informations from sea surface temperature changes were compared with the dyke to allow them inside and outside of Saemangeum embankment. The spatial extent of the spread of sea water were analyzed by SST using MODIS and Landsat thermal channel data. The difference of sea surface temperature between inland and offshore waters of Saemangeum embankment have changed by seasonal flow and residence time of sea water in dyke.

RESULTS OF OBSERVATION IN HABITAT OF THE SANBANNSE LAGOON AT TOKYO BAY

  • OGIHARA KUNIHIRO;MATUZAWA ATUKO
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회(2)
    • /
    • pp.1303-1304
    • /
    • 2005
  • The sea water and the soil of surface zone in lagoon have many physical relations between each other by both physical phenomena such as tidal motion and wave action, and activity of a creature which lives in soil zone. The soil zone has an activity of filtering the sea water at lowering tide and also the organic materials in sea water are supplied into the soil. And small creatures such as small crab eat organic materials. Usually the surface zone of lagoon becomes under the sea water in two times of a day and also is coming in two times under the sunshine and it becomes dries up conditions. Authors made the field observation at Sanbannse lagoon in Tokyo bay in several times between 2002 to 2004. The observation has been done in a half period of tide in October and November 2002 and also full tide observation is made in July 2, 2003 in summer and November 26, 2003 in autumn. In 2004, three times observations of full tide has been made in three times as June 22, July 20 and December 14. This report is the summary of results on these observations focusing on the soil surface zone and sea water at under ground and wave breaking zone.

  • PDF

해수를 사용한 MICP 기술의 연안 지반 개량시 발생하는 특성 분석 (Characteristic of Coastal Soil Improvement by MICP Technology Using Sea Water)

  • 김소정;도진웅
    • 한국지반신소재학회논문집
    • /
    • 제22권2호
    • /
    • pp.13-21
    • /
    • 2023
  • 최근 지구온난화 등으로 인하여 지구의 평균해수면이 상승하는 추세이다. 삼면이 바다인 국내의 경우 연안침식이 초래되어 국토 손실 및 연안의 위험성을 높일 가능성이 있다. 미생물에 의한 탄산칼슘 형성(MICP) 기술은 미생물에 의한 탄산칼슘침강 기술이며, 지반의 강성과 강도를 증진시키는 친환경적 방법이다. 본 연구에서는 연안 침식 저감을 위하여 MICP 기술을 제안하였다. 연안 조건을 고려하여 용매로 해수를 사용하고 탈염수와 그 성능을 비교하였다. 탈염수와 해수 조건하에서 미생물에 의한 요소분해능을 조사하였다. 소일칼럼을 제작하여 MICP 처리된 모래의 강도 평가를 실시하였다. MICP 처리는 표면살포법에 의해 처리되었는데, 이러한 방식은 기존의 혼합 방식과 달라 전통적인 강도 평가 방식은 적절하지 않음을 확인하였다. 미세 구조 분석을 통해 다른 용매가 사용된 경우의 광물적 변화를 관측하였다. 실험 결과, 해수는 미생물에 의한 요소분해 반응을 느리게 만드는 것을 확인하였다. 표면 경화된 모래는 침관입시험을 통해 효과적으로 평가할 수 있었다. 이 연구에서는 해수를 용매로 사용하여도 탈염수 수준으로 충분히 MICP 기술 적용이 가능함을 확인하였다.

Oxygen Isotope Data of Winter Water in the Western Weddell Sea: Preliminary Results

  • Khim, Boo-Keun;Park, Byong-Kwon;Kang, Sung-Ho
    • Journal of the korean society of oceanography
    • /
    • 제33권1-2호
    • /
    • pp.1-7
    • /
    • 1998
  • In the western Weddell Sea, winter mixed layer is characterized by near-freezing temperature and higher salinity due to brine injection through sea-ice formation. This layer becomes Winter Water being capped by warmer and less saline Antarctic Surface Water during the sea-ice melt-ing season. In this study, Winter Water was preliminarily identified by the oxygen isotopic com-positions. The ${\delta}^{18}$O values of Winter Water show the progressively increasing trend from south to north in the study area. It presumably reflects the enhanced mixing with Antarctic Surface Water due to the extent of influence by low S'"0 value of sea-ice/glacier meltwater. Correlations between salinity and 6'"0 values of seawater can be used to more generally characterize Winter Water with a view to identification. However, the prediction on the degree of mixing from these relationships needs more detailed isotope data, although this study allows the oxygen isotopic composition of seawater as a tracer to identify the water mass.

  • PDF

Climatological Trend of Sea Water Temperature around the Antarctic Peninsula Waters in the Southern Ocean

  • Lee, Chung-Il;Kim, Sang-Woo;Kim, Dong-Sun;Yoon, Moon-Geun
    • 한국환경과학회지
    • /
    • 제21권2호
    • /
    • pp.125-133
    • /
    • 2012
  • Climatological trend for the period of 1970 to 2009 in sea water temperature around the Antarctic Peninsular waters in the Southern Ocean was investigated. During the period from 1970 to 2009, sea water temperature in the top 500 m water column except 100 m increased at a rate of $0.003-0.011^{\circ}C{\cdot}yr^{-1}$, but at 100 m it decreased at a rate of $-0.003^{\circ}C{\cdot}yr^{-1}$. Although long-term trend is generally warming, there were several periods of sharp changes between 1970 and 2009. Annual mean sea water temperature between surface and 500 m except 100 m decreased from the early of 1970s to the end of 1980s, and then it increased to the end of 2000s. In the entire water column between the surface and 500 m, sea water temperature closely correlated with the El Nino events expressed as the Southern Oscillation Index(SOI), and SOI and sea water temperature have a dominant period of about 3-5 years and decade.

해양온도차 발전소의 입지선정을 위한 해수 온도차의 공간적 분포특성 분석 (A Property Analysis on Spatial Distribution of Sea Water Temperature Difference for Site Selection of Ocean Thermal Energy Conversion Plant)

  • 서영상;장이현;조명희
    • 에너지공학
    • /
    • 제8권4호
    • /
    • pp.567-575
    • /
    • 1999
  • 한국동해 연근해역의 표층수온은 일반적으로 온대해역에서의 표층수온과 같이 계절변화를 하지만, 심층에서는 연중 1 $^{\circ}C$이하의 온도를 유지하는데 동해고유수로 인하여 표층의 온수와 심층의 냉수간의 온도차를 이용한 해양온도차 발전의 충분한 잠재성이 있다. 해양온도차 발전의 제 1 조건인 표층수와 심층수간의 온도차에 관련된 한국 동해의 해양 환경적 특성을 정량화 하고자 온도차에 대한 연평균, 연진폭, 연위상을 구하고 연중 15$^{\circ}C$이상의 온도차가 유지된는 기간을 일일 단위로 표현하였다. 한국동해 연근 해역 중 온도차 발전의 최적합 해역은 포항 동쪽 35km 해역 (36$^{\circ}$05'N, 129$^{\circ}$48'E)에서 55km 해역 (36$^{\circ}$05'N, 130$^{\circ}$00'E)까지로 조사 연구되었다. 이들 최적합 해역에서는 온도차는 8월의 경우 누년 평균 약 24$^{\circ}C$로 나타났으며, 년 중 15$^{\circ}C$이상의 온도차가 유지되는 기간은 최대 215일 (5/5-12/10)로 나타났다. 아울러 이 해역에서 온도차의 연진폭은 6$^{\circ}C$이며 , 연위상은 236$^{\circ}$로 계획성있는 전력생산을 할수 있을것으로 사료된다. 한국 동해 연근해역에서 표층으로부터 수직으로 최단거리에 존재하는 동해고유수(수온 1$^{\circ}C$이하의 해수)의 수심에 대한 계절변화는 평균 300m를 중심으로 하여 50m 미만의 작은 변동폭을 나타내었다. 향후 이러한 안정된 위치를 나타내는 심층 냉수를 에너지로 전환하기 위한 연구가 수행되어야 할 것으로 판단된다.

  • PDF

해양심층수의 특성과 이용 및 국내외 연구현황 (Current Status of Domestic and Overseas Research of the Characteristics and Use of Deep Sea Water)

  • 정갑택;이상현
    • 한국식품영양학회지
    • /
    • 제21권4호
    • /
    • pp.592-598
    • /
    • 2008
  • Deep sea water is found more than 200 m under the surface. As no sunlight reaches, no photosynthesis takes place, and it has very little organic matter or bacteria. In addition, deep sea water maintains a consistently low temperature throughout the year, and it does not mix with the water found closer to the surface, which means that its cleanliness is preserved. It is a long-term mature sea water resource that is rich in minerals. This paper examined the physical characteristics and the uses of deep sea water, a subject that has been attracting a great deal of public attention recently, together with the current status of domestic research into it and the direction of research in the USA and Japan, focusing on the existing literature. The aim of this paper was to provide are source to researchers in the field. Since the 1970s, scientists around the world have recognized the importance of deep sea water, and have been conducting research into it. In the USA, deep sea water has been researched with the view of its application to cooling, alternative energy, farming, and the development of new materials. In Japan, about 10 local self-governing bodies are currently promoting research and business relating to deep sea water, which has resulted in a number of products that have been released to the market. In Korea, the ministry of land transport and marine affairs has been studying deep sea water since 2000, and full-scale national R&D projects have been performed by 24 organizations, including KORDI, through industrial/academic cooperation. Large companies are participating in deep sea water research projects in several ways. A study of data foundusing NDSL relating to domestic studies of deep sea water found 50 theses, 177 domestic patents, 6 analyses, 2 reports, and 2 etc. in other areas.