• Title/Summary/Keyword: surface roughness model

Search Result 493, Processing Time 0.023 seconds

Effect of Sliding Velocity on 3D Rough Surface in Mixed Lubrication Regime (속도의 영향에 따른 3차원 거친 표면의 혼합윤활해석)

  • Lim, DongJin;Moon, Sukman;Cho, Yongjoo
    • Tribology and Lubricants
    • /
    • v.29 no.1
    • /
    • pp.27-32
    • /
    • 2013
  • This study examined the effects of surface roughness in the mixed lubrication regime of smooth and rough surfaces for roller bearings. The average flow model was adopted for interaction between the flow rheology of the lubricant and the surface roughness. The average Reynolds equation and related flow factor that describes the coupled effects of surface roughness and flow rheology, the viscosity-pressure and density-pressure equations, the elastic deformation equation, and the force balance equation were solved simultaneously. The results showed that the effects of surface roughness on the film thickness and pressure distribution should be considered, especially in elastohydrodynamic lubrication contact problems.

The OMM system for machined form and surface roughness measurement concerned with volumetric error (기계 체적오차가 고려된 가공형상-거칠기 측정 OMM 시스템)

  • 이상준;김선호;김옥현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.681-686
    • /
    • 2000
  • Machining information such as machined form and surface roughness accuracy is an important factor for manufacturing precise parts. To this regard, OMM(On the Machine Measurement) has been issued for last several decades to alternate with CMM. In this research, measuring system consisting of a laser probe is developed for machined form and surface roughness measurement on the machine tool. The obtained machined form accuracy is compared with reference one defined in CAD model. The measured surface roughness data is compared with measured master surface beforehand. Furthermore, using the pre-defined volumetric error map approach compensates the geometric accuracy of the machine tool. The overall performance is compared with CMM, and verified the feasibility of the measurement system.

  • PDF

Influence of Injection Amount Variation on Surface Roughness at FDM (FDM에서 주사량 변화가 쾌속조형물의 표면거칠기에 미치는 영향)

  • Ha, M.K.;Jun, J.U.
    • Journal of Power System Engineering
    • /
    • v.6 no.2
    • /
    • pp.54-59
    • /
    • 2002
  • The principle of the FDM(fused deposition modeling) process is based on the layer by layer manufacturing technology, like other RP(rapid prototyping) process. In the FDM process, each layer may have different shape. Therefore, the built model may have stairs shape on its surface. This stairs shape is one of the serious problems in the FDM process. Thus in this study, cube models and spherical models were fabricated by FDM process to investigate the influence of injection amount on surface roughness. Models with various road width were also built to investigate the influence of road width on surface roughness. Surface roughness of the models was measured and analyzed. The result obtained in this study are expected to help selecting the part build orientation for optimum surface roughness.

  • PDF

The OMM System for Machined Form and Surface Roughness Measurement Concerned with Volumetric Error (기계 체적오차가 고려된 가공형상-거칠기 측정 OMM 시스템)

  • 이상준;김선호;김옥현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.232-240
    • /
    • 2000
  • Machining information such as machined form and surface roughness accuracy is an important factor for manufacturing precise parts. To this regard, OMM(On the Machine Measurement) has been issued for last several decades to alternate with CMM. In this research, measuring system consisting of a laser probe is developed for machined form and surface roughness measurement on the machine tool. The obtained machined form accuracy is compared with reference one defined in CAD model. The measured surface roughness data is compared with measured master surface beforehand. Furthermore, using the pre-defined volumetric error map approach compensates the geometric accuracy of the machine tool. The overall performance is compared with CMM, and verified the feasibility of the measurement system.

  • PDF

Effects of cutting condition on surface roughness in the spiral up milling of aluminum alloy (알루미늄 합금의 스파이럴 상향가공 시 절삭조건이 표면거칠기에 미치는 영향)

  • Chun, Se-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.83-90
    • /
    • 2014
  • The spiral up milling of an aluminum alloy was performed in this study. In accordance with the cutting condition, the surface roughness behavior and significance of the research with regard to specific factors were analyzed. The cutting speed, feed, and depth of the cut were found to be statistically significant. A higher cutting speed improved the surface roughness. On the other hand, as the feed and depth of the cut increase, the surface roughness decreases. An interaction effect between the feed and depth of the cut was detected. According to the surface roughness in relation to the cutting conditions, the model showed non-linear behavior.

MODELING AND ANALYSIS ON THIN-FILM FLOW OVER A ROUGH ROTATING MAGNETIC DISK

  • Kim, Sung-Won;Moon, Byung-Moo
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.645-649
    • /
    • 1995
  • The depletion of thin liquid films due to the combined effect of centrifugation, surface roughness, and air-shear has recently been studied. While surface roughness of a rotating solid disk can be represented by deterministic cures, it has been argued that spatial random processes provide a more realistic description. Chiefly because of surface roughness, there is an asymptotic limit of retention of a thin film flowing on the rotating disk. The aim of this article is to model the depletion of thin-film flow and analyze the interplay of centrifugation, surface tension, viscosity, air-shear, disjoining pressure, and surface roughness that affect the depletion of the film. Also, the robustness of stochastic description of surface roughness is examined.

  • PDF

Minimization of Surface Roughness for High Speed Machining by Surface Fitting (곡면 Fitting을 이용한 고속가공 표면거칠기의 최소화)

  • Jung Jong-Yun;Cho Hea-Young;Lee Choon-Man;Moon Dug-Hee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.2
    • /
    • pp.37-43
    • /
    • 2004
  • High speed machining is a machining process which cuts materials with the fast movement and rotation of a spindle in a machine tool. It reduces machining time because of the high feed and the high speed of a spindle. In addition it gets rid of post processes for high precision machining. When the high speed machining is applied to especially hardened steel, operators should select the proper parameters of machining. This can produce machining surfaces which is qualified with good surface roughness. This paper presents a method for selecting machining parameters to minimize surface roughness with high speed machining in cutting the hardened steels. Experimental data for surface roughness are collected in a machining shop based on the cutting feed and the spindle rotation. The data fits in hi-cubic polynomial surface of mathematical form. From the model this research minimize the surface roughness to find the optimal values of the feed and the spindle speed. This paper presents a program which automatically generates optimal solutions from the raw data of experiments.

The Effect of Cutting Edge on the Surface Roughness In Cutting Brittle Materials (취성재료의 가공시 절삭날이 표면거칠기에 미치는 영향)

  • Kim, Joo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.53-61
    • /
    • 1996
  • A clear understanding of the surface formation mechanism due to cutting is very important to help produce a good quality surface. Much of the roughness along the length of a bar being cut in a lathe can be explained in terms of macroscopic tool shape and feed rate. However, the roughness along the direction of cutting requires a different explanation. The formation of surface roughness is a problem in flow and fracture of materials in the vicinity of the tool edge. On a microscopic scale the cutting edge is rounded because it is impossible to grind a perfectly sharp cutting edge. Even if a perfectly sharp cutting edge were obtained it would soon become dull as a result of rapid breakdown and wear of the cutting edge. A research project is proposed in which in the main object is to model the surface formation mechanism due to cutting. The tool was assumed to be dull, that is, its edge has a finite radius. In order to study the effect of the radius of cutting edge on the surface formation, tools having different cutting edges were used. For orthogonal cutting experiment, cast iron and glass were chosen as brittle materials. Plowing forces acting in the cutting edge were estimated and its effect on the surface roughness was studied by observing the machined surface using optical microscope.

  • PDF

Extraction of tire information markings using a surface reflection model (표면의 반사 특성을 이용한 타이어 정보 마크의 추출)

  • Ha, Jong-Eun;Lee, Jae-Yong;Gwon, In-So
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.324-329
    • /
    • 1996
  • In this paper, we present a vision algorithm to extract the tire information markings on the sidewall of tires. Since the appearance of tire marks is the same as its background, a primary feature to distinguish tire marks from their background is the roughness. Generally, the roughness of tire marks is different from that of its bakground: the surface of tire marks is smoother than the backgrounds. Light incident on the tire surface is reflected differently according to the roughness. For smoother surfaces, the surface irradiance is much stronger than that of rough surfaces. Based on these phenomena and observation, we propose an optimal illumination condition based on Torrance-Sparrow reflection model. We also develop an efficient reflectance-ratio based operator to extract the boundary of tire marks. Even with a very simple masking operation, we were able to obtain remarkable boundary extraction results from real experiments using many tires. By explicitly using the surface reflection model to explain the intensity variation on the black tire surface, we demonstrate that a physics-based vision method is powerful and feasible in extracting surface markings on tires.

  • PDF

Mixed Lubrication Analysis of Parallel Thrust Bearing by Surface Topography (Surface Topography를 이용한 평행 스러스트 베어링의 혼합윤활 해석)

  • 이동길;임윤철
    • Tribology and Lubricants
    • /
    • v.16 no.2
    • /
    • pp.106-113
    • /
    • 2000
  • Effects of surface roughness on bearing performances are investigated numerically in this study, especially for the parallel thrust bearing. Although mating surfaces are parallel and separated by thin fluid film, the pressure distribution is formed due to asperities. Model surface is generated numerically with given autocorrelation function and some surface profile parameters. Then the average Reynolds equation is applied to predict the effects of surface roughness between hydrodynamic and mixed lubrication regimes. In this equation, flow factors are defined as correction terms to smooth out high frequency surface roughness. The correlation length is proposed to get the minimum load for the parallel thrust bearing for various sliding conditions.