• Title/Summary/Keyword: surface protection

Search Result 1,027, Processing Time 0.033 seconds

A Study of a Heat Flux Mapping Procedure to Overcome the Limitation of Heat Flux Gauges in Fire Tests (화재실험시 열유속 센서 사용의 단점을 보완한 Heat Flux Mapping Procedure에 관한 연구)

  • Choi, Keum-Ran
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.171-179
    • /
    • 2005
  • It is essential to understand the role of wall lining materials when they are exposed to a fire from an ignition source. Full-scale test methods permit an assessment of the performance of a wall lining material. Fire growth models have been developed due to the costly expense associated with full-scale testing. The models require heat flux maps from the ignition burner flame as input data. Work to date was impeded by a lack of detailed spatial characterization of the heat flux maps due to the use of limited instrumentation. To increase the power of fire modeling, accurate and detailed heat flux maps from the ignition burner are essential. High level spatial resolution for surface temperature can be provided from an infrared camera. The objective of this study was to develop a heat flux mapping procedure for a room test burner flame to a wall configuration with surface temperature information taken from an infrared camera. A prototype experiment was performed using the ISO 9705 test burner to demonstrate the developed heat flux mapping procedure. The results of the experiment allow the heat flux and spatial resolutions of the method to be determined and compared to the methods currently available.

A New HF/$NH_4F$/Glycerine Aqueous Solution for Protection of Al Layers During Sacrificial Etching of PSG Films (PSG 희생층 식각시 Al층을 보호하기 위한 새로운 HF/$NH_4F$/Glycerine 혼합 식각액)

  • Kim, Sung-Un;Paik, Seung-Joon;Kim, Im-Jung;Lee, Seung-Ki;Cho, Dong-Il
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.414-420
    • /
    • 1999
  • The oxide sacrificial layer technology is one of the key technologies in surface micromachining. However, the commonly used aqueous HF solutions, including the $NH_4F$ buffered HF solutions (BHF), are known to attack the Al metal layers during the oxide sacrificial etch. A mixed $NH_4F$/HF/glycerine aqueous solution of 4:1:2 ratio is known to have the best etch selectivity between oxide and AI, but even this sacrificial etchant has a significant etch rate for AI. This paper reports an extensive experimental study on various concentration ratios for HF, $NH_4F$ and glycerine, and develops the optimal mixture ratio for sacrificial etching. At the $NH_4F$/HF/glycerine ratio of 2:1:4, the etch selectivity between PSG and Al improves by approximately 6 times over the previously known best selectivity, to a value of 7,700. At this condition, the measured etch rate of PSG film is approximately $2.1\;{\mu}m/min$, which is sufficiently fast. The developed sacrificial etchant allows the addition of a Al metal layer in surface micromachining, without the worry of Al layer erosion during sacrificial etch.

  • PDF

Tracking Propagation Mechanism on the Surface of Polyvinyl-Chloride-Sheathed Flat Cord based on Electric Field Analysis and Gas Discharge Physics (전계해석과 기체방전 이론을 기반으로 한 Polyvinyl-Chloride-Sheathed Flat Cord 표면의 트래킹 진전 메커니즘)

  • Lim, Dong-Young;Park, Herie;Jee, Seung-Wook
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.30-38
    • /
    • 2019
  • Tracking, which is one of the main causes of electrical fires, is perceived as a physical phenomenon of electrical discharge. Hence tracking should be explained based on electric field analysis, conduction path by electron generation, and gas discharge physics. However, few papers have considered these details. This paper proposes a tracking mechanism including their effects on tracking progress. In order to prove this mechanism, a tracking experiment, an electric field analysis for the carbonization evolution model, and an explanation of the tracking process by gas discharge physics were conducted. From the tracking experiment, the current waveforms were measured at each stage of the tracking progress from corona discharge to tracking breakdown. The electric field analysis was carried out in order to determine the electric field on the surface of a dry-band and the high electric field region for electron generation during the generation and progress of carbonization. In this paper, the proposed tracking mechanism consisted of six stages including electron avalanche by corona discharge, accumulation of positive ions, expansion of electron avalanche, secondary electron emission avalanche, streamer, and tracking by conductive path. The pulse current waveforms measured in the tracking experiment can be explained by the proposed tracking mechanism. The results of this study will be used as the technical data to detect tracking phenomenon, which is the cause of electric fire, and to improve the proof tracking index.

A Measurement of Exposure Dose for Patient Transporter (환자 이송원의 피폭선량 측정)

  • Song, Chaerim;Lee, Wanghui;Ahn, Sungmin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.433-438
    • /
    • 2019
  • The medical institutions use radiation generating devices and radioactive isotopes to diagnose and treat patients. The patient transporter performs work in an environment that is more likely to be exposed to radiation when compared with the general public, such as inevitably entering the radiation management area for patient transfer, or transferring the isotope-administered patient at a short distance. For this reason, we conducted a study to determine the degree of exposure of the patient transporter. The 12 patient transporters working at Incheon A General Hospital are eligible. From April 1, 2019 to April 30, 2019, the dosimeter was used in the chest for one month and the accumulated dose was measured. The dosimeter used was a Optically Stimulated Luminescence Dosimetry (OSLD) and the dose reading was OSLD Microstar Reading System. As a result of cumulative dose measurement for one month, the average of the deep dose was 0.13 mSv and the surface dose was 0.13 mSv, and the cumulative dose for one month was multiplied by 12 to estimate the cumulative dose expectation As a result, the average of the deep dose and the surface dose were 1.52 mSv and 1.51 mSv, respectively. It is necessary to classify the patient transporter as a frequent visitor in order to measure and manage the exposure dose, increase the knowledge of protection against radiation through education and training, and prevent radiation trouble through medical examination.

Proper Monitoring Methods for Safety Management of Tailings Dam (광물찌꺼기적치장의 안전관리를 위한 적정 모니터링 방안 연구)

  • Jung, Myung Chae;Kim, Jeong Wook;Hwang, In-ho;Yang, In Jae;Park, Jay Hyun;Park, Ju Hyun;Kim, Tae Youp
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.576-587
    • /
    • 2018
  • This study has focused on analysis factors affecting safety monitoring system at tailings sites, and the evaluation equipment to monitor the factors. Twenty sites at eighteen mines with unsafe conditions were selected to examine the equipment. There were three main factors influenced safety in the sites including surface erosion, piping, and slope instability. In detail, the surface erosion was divided into three sub-factors (planting, soil-topping layer, and tailings), piping into three sub-factors (liner, rain protection facility and leachate), and slop instability was also divided into three sub-factors (slop, concrete wall, and reinforcing wall). As results of in-field measurement, a CCTV was the most effective facility, and electrical resistivity survey, acoustic sensing, thermal liner sensor, structure inclinometer, rainfall meter, and flowmeter were also highly effective. According to applications of the facilities in the unstable tailings, structural defects were mainly found in the piping, which was the most important monitoring factor for safety management of tailings sites.

Effect of Post-treatment Using Acidic Amino Acids during Hair Coloring on Hair Condition (산성 아미노산 후처리가 헤어컬러링 시 모발에 미치는 영향)

  • Lee, Jin Young;Lee, Sang Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.427-434
    • /
    • 2021
  • Modern people express their beauty through hair coloring, but hair can be damaged by repeated chemical treatments. In order to increase the durability of dyeing and minimize the hair damage, in this study, the acidic amino acids including aspartic acid (Asp) and glutamic acid (Glu) were used to post-treat hair during hair coloring. The post-treatment with 0.75% Asp and Glu solution was carried out at room temperature for 20 minutes after dyeing bleached hair with cherry red and blue silver colors. After repeated shampooing of 1, 5, 10, 15, 20, and 25 times, L*a*b* value of dyed hair was measured to confirm the dyeing durability, and the changes in tensile strength, porosity, and surface properties of the hair were also analyzed to determine the condition of the hair. In the case of cherry red and blue silver staining, the Asp and Glu experimental group showed higher color persistence than the control group, and the Asp and Glu experimental group showed higher tensile strength, lower porosity and smooth surface properties than the control group. In particular, the Asp test group showed superior color persistence and lower hair damage than the Glu test group. This study, therefore, if damaged in dyeing and bleaching in the field of hair after treatment with asp glu a combination of hair cosmetics in the development of basic data look forward to be.

Clinical Practice of COVID-19 and Infection Control by Dental Hygiene Students in Jeju Province (제주지역 치위생과 학생의 COVID-19와 감염관리 임상실습 수행 실태)

  • Baek, Soo-Jeong;Woo, Jaeman;Kim, Sung-Joon
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.2
    • /
    • pp.370-378
    • /
    • 2022
  • The purpose of this study was to investigate the factors affecting infection control practice by dental hygienist students in Jeju during clinical training amidst the COVID-19 pandemic. Online survey was conducted on 112 students and the results were statistically analyzed with frequency analysis, Student's T-test, one-way ANOVA, and regression analysis using SPSS 20.0. In the 'awareness and practice of infection control by year in college' section, 2nd year students scored significantly higher in 'cleaning and surface disinfection,' 'medical waste disposal,' and 'COVID-19 preventive measure' compared to 3rd year students. In the 'type of training institution' section, hospital setting scored significantly higher in 'cleaning and surface disinfection,' 'instrument disinfection and sterilization,' 'personal and patient protection,' and 'COVID-19 preventive measure' compared to dental clinic setting. In the 'location of institution' section, Seoul metropolitan region scored higher in 'medical waste disposal' compared to Jeju region. According to regression analysis, year in college (2nd year), type of training institution (hospital setting), location of training institution (Seoul metropolitan region), and difficulty using protective gear (no difficulty) were associated with better COVID-19 preventive measure This first study in Jeju provides an insight on the awareness and practice of infection control measures by dental hygienist students in Jeju during clinical training. Further investigation for improvement of clinical training manual is warranted.

Optimization of Abdominal X-ray Images using Generative Adversarial Network to Realize Minimized Radiation Dose (방사선 조사선량의 최소화를 위한 생성적 적대 신경망을 활용한 복부 엑스선 영상 최적화 연구)

  • Sangwoo Kim;Jae-Dong Rhim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.2
    • /
    • pp.191-199
    • /
    • 2023
  • This study aimed to propose minimized radiation doses with an optimized abdomen x-ray image, which realizes a Deep Blind Image Super-Resolution Generative adversarial network (BSRGAN) technique. Entrance surface doses (ESD) measured were collected by changing exposure conditions. In the identical exposures, abdominal images were acquired and were processed with the BSRGAN. The images reconstructed by the BSRGAN were compared to a reference image with 80 kVp and 320 mA, which was evaluated by mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM). In addition, signal profile analysis was employed to validate the effect of the images reconstructed by the BSRGAN. The exposure conditions with the lowest MSE (about 0.285) were shown in 90 kVp, 125 mA and 100 kVp, 100 mA, which decreased the ESD in about 52 to 53% reduction), exhibiting PSNR = 37.694 and SSIM = 0.999. The signal intensity variations in the optimized conditions rather decreased than that of the reference image. This means that the optimized exposure conditions would obtain reasonable image quality with a substantial decrease of the radiation dose, indicating it could sufficiently reflect the concept of As Low As Reasonably Achievable (ALARA) as the principle of radiation protection.

A Study on the Maritime Law According to the Occurrence of Marine Accidents of MASS(Maritime Autonomous Surface Ship) (자율운항선박의 해양사고 발생에 따른 해상법적 고찰)

  • Lee, Young-Ju
    • Maritime Security
    • /
    • v.6 no.1
    • /
    • pp.37-56
    • /
    • 2023
  • Recently, with the rapid development of ICT(Information and Communication Technology) and AI(Artificial Intelligence) technology industries, the emergence of MASS(Maritime Autonomous Surface Ship), which were thought only in the distant future, is approaching a reality. Along with the development of these amazing technologies, changes in the private law sector, such as liability, compensation for damages, and maritime insurance, as well as in the public law sector, such as maritime safety, marine environment protection, and maintenance of maritime order, have become necessary in the field of maritime law. In particular, with the advent of a new type of ship called MASS that does not have a crew on board, the kind and type of liability, compensation for damages, and insurance contracts in the event of a marine accident will also change. In this paper, the general theory about concept, classification, effectiveness and future of MASS and the general theory about concept and various obligations and responsibilities under the maritime law for discussion of MASS are reviewed. Next, in addition, regarding the problems that may occur in the event of a marine accident from MASS, the status as a ship, the legal relationship of the chartering contract, obligation to exercise due diligence in making the vessel seaworthiness, subject of responsibility, and liability for damages and immunity are reviewed from the perspective of maritime law. In addition, in the degree four of MASS, the necessities of further research to clarify the attributable subjects and standards of responsibility in the event of a marine accident, as well as the necessities of institutional improvement such as technology development, enactment and amendment of law and funding are presented.

  • PDF

Barrier Techniques for Spinal Cord Protection from Thermal Injury in Polymethylmethacrylate Reconstruction of Vertebral Body : Experimental and Theoretical Analyses (Polymethylmethacrylate를 이용한 척추체 재건술에서 척수의 열 손상을 방지하기 위한 방어벽 기법 : 실험적 및 이론적 분석)

  • Park, Choon Keun;Ji, Chul;Hwang, Jang Hoe;Kwun, Sung Oh;Sung, Jae Hoon;Choi, Seung Jin;Lee, Sang Won;Park, Sung Chan;Cho, Kyeung Suok;Park, Chun Kun;Yuan, Hansen;Kang, Joon Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.3
    • /
    • pp.272-277
    • /
    • 2001
  • Objective : Polymethylmethacrylate(PMMA) is often used to reconstruct the spine after total corpectomy, but the exothermic curing of liquid PMMA poses a risk of thermal injury to the spinal cord. The purposes of this study are to analyze the heat blocking effect of pre-polymerized PMMA sheet in the corpectomy model and to establish the minimal thickness of PMMA sheet to protect the spinal cord from the thermal injury during PMMA cementation of vertebral body. Materials & Methods : An experimental fixture was fabricated with dimensions similar to those of a T12 corpectomy defect. Sixty milliliters of liquid PMMA were poured into the fixture, and temperature recordings were obtained at the center of the curing PMMA mass and on the undersurface(representing the spinal cord surface) of a prepolymerized PMMA sheet of variable thickness(group 1 : 0mm, group 2 : 5mm, or group 3 : 8mm). Six replicates were tested for each barrier thickness group. Results : Consistent temperatures($106.8{\pm}3.9^{\circ}C$) at center of the curing PMMA mass in eighteen experiments confirmed the reproducibility of the experimental fixture. Peak temperatures on the spinal cord surface were $47.3^{\circ}C$ in group 2, and $43.3^{\circ}C$ in group 3, compared with $60.0^{\circ}C$ in group 1(p<0.00005). So pre-polymerized PMMA provided statistically significant protection from heat transfer. The difference of peak temperature between theoretical and experimental value was less than 1%, while the predicted time was within 35% of experimental values. The data from the theoretical model indicate that a 10mm barrier of PMMA should protect the spinal cord from temperatures greater than $39^{\circ}C$(the threshold for thermal injury in the spinal cord). Conclusion : These results suggest that pre-polymerized PMMA sheet of 10mm thickness may protect the spinal cord from the thermal injury during PMMA reconstruction of vertebral body.

  • PDF