• 제목/요약/키워드: surface protection

검색결과 1,021건 처리시간 0.025초

함침계 표면보호제에 의한 콘크리트 표면의 세공구조 변화 및 내구성 향상 (Improvement of Durability and Change of Pore Structure for Concrete Surface by the Penetrative Surface Protection Agent)

  • 강석표;김정환
    • 콘크리트학회논문집
    • /
    • 제18권1호
    • /
    • pp.125-132
    • /
    • 2006
  • 최근 들어 툭별한 물리적 방법을 사용하지 않고 내구성능이 저하된 콘크리트의 성능을 회복시키는 방법의 일환으로서 콘크리트 표면보호재에 대한 관심이 높아지고 있다. 표면보호는 직접적인 의미로서는 콘크리트 구조물의 표면을 보호하는 것뿐만아니라 다양한 열화요인의 침투를 억제함으로서 내부의 콘크리트 및 철근의 열화를 억제하여 콘크리트 구조물을 보호하게 된다. 이와 같은 표면보호재 중 함침계 표면보호재는 콘크리트 표면층의 공극에 충전 혹은 생성물을 석출시켜 치밀한 층으로 하느 충전계와 콘크리트 표면층의 외부 및 내부표면의 성질을 개선하는 표면계로 분류하는 것이 가능하다. 따라서 본 연구는 규플르오르화염을 주성분으로 하는 표면형 함침계 표면보호제 도포에 의한 콘크리트 표면의 세공구조의 변화 및 중성화, 염해, 화학적 침식 등의 내구성 향상을 실험실증적으로 검토함으로서 콘크리트 구조물의 내구성향상 방안을 제시하고자 한다. 그 결과, 표면보호제를 도포함으로서 모든 물시멘트비에서 도포전과 비교하여 전세공용적이 감소하고 있으며, 특히 50nm이상의 비교적 큰 세공경인 모세관공극의 용적이 감소함으로서 물흡수성, 중성화 저항성, 내황산성, 염소이온침투 저항성 등의 내구성 향상에 기여하는 것으로 나타났으며, 그 효과는 물시멘트비가 클수록 높게 나타났다.

강의 음극방식에 미치는 표면상태와 유속의 영향 (The Effects of Surface Condition and Flow Rate to the Cathodic Protection Potential and Current on Steel)

  • Kyeong-soo, Chung;Seong- Jong, Kim;Myung-Hoon, Lee;Ki-Joon, Kim;Kyung-Man, Moon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권6호
    • /
    • pp.972-980
    • /
    • 2004
  • Cathodic protection is being widely used to protect steel structures in sea water environment, In order to protect steel structures completely, the flow condition of sea water surrounding with this structures and the surface condition of the structures must be considered for a desirable design of cathodic protection. In this study, the optimum protection potential and current density were investigated in terms of cathodic current density, surface condition and a flow condition of sea water. The optium protection potential of the cleaned specimen was -770 mV(SCE) and below. However in the case of the rusted specimen, its potential was -700 mV(SCE) and below, which was somewhat positive than the cleaned one irrespective of flow condition. The optimum cathodic protection current density for both the cleaned and rusted specimens was 100 mA/$\textrm{m}^2$, however, on the flow condition, 200 mA/$\textrm{m}^2$ to be supplied for cathodic protection of steel structures completely for both cleaned and rusted specimens.

Practical Silicon-Surface-Protection Method using Metal Layer

  • Yi, Kyungsuk;Park, Minsu;Kim, Seungjoo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권4호
    • /
    • pp.470-480
    • /
    • 2016
  • The reversal of a silicon chip to find out its security structure is common and possible at the present time. Thanks to reversing, it is possible to use a probing attack to obtain useful information such as personal information or a cryptographic key. For this reason, security-related blocks such as DES (Data Encryption Standard), AES (Advanced Encryption Standard), and RSA (Rivest Shamir Adleman) engines should be located in the lower layer of the chip to guard against a probing attack; in this regard, the addition of a silicon-surface-protection layer onto the chip surface is a crucial protective measure. But, for manufacturers, the implementation of an additional silicon layer is burdensome, because the addition of just one layer to a chip significantly increases the overall production cost; furthermore, the chip size is increased due to the bulk of the secure logic part and routing area of the silicon protection layer. To resolve this issue, this paper proposes a practical silicon-surface-protection method using a metal layer that increases the security level of the chip while minimizing its size and cost. The proposed method uses a shift register for the alternation and variation of the metal-layer data, and the inter-connection area is removed to minimize the size and cost of the chip in a more extensive manner than related methods.

Polymerized Organic Thin Films and Comparison on their Physical and Electrochemical Properties

  • Cho, S.H.;You, Y.J.;Kim, J.G.;Boo, J.H.
    • 한국표면공학회지
    • /
    • 제36권1호
    • /
    • pp.9-13
    • /
    • 2003
  • Plasma polymerized organic thin films were deposited on Si(100), glass and metal substrates at $25∼100 ^{\circ}C$ using thiophene and toluene precursors by PECVD method. In order to compare physical and electrochemical properties of the as-grown thin films, the effects of the RF plasma power in the range of 30∼100 W and deposition temperature on both corrosion protection efficiency and physical properties were studied. We found that the corrosion protection efficiency ($P_{k}$), which is one of the important factors for corrosion protection in the interlayer dielectrics of microelectronic devices application, was increased with increasing RF power. The highest $P_{k}$ value of plasma polymerized toluene film (85.27% at 70 W) was higher than that of the plasma polymerized thiophene film (65.17% at 100 W), indicating inhibition of oxygen reduction. The densely packed and tightly interconnected toluene film could act as an efficient barrier layer to the diffusion of molecular oxygen. The result of contact angle measurement showed that the plasma polymerized toluene films have more hydrophobic surface than those of the plasma polymerized thiophene films.

축하중을 받는 내화피복 CFT기둥의 온도분포 특성 (Characteristics of Temperature Distribution of Axially Loaded CFT Column with Fire Protection)

  • 김해수;윤성기
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권4호
    • /
    • pp.78-85
    • /
    • 2010
  • 화재발생시 콘크리트충전 강관(CFT)기둥은 강재의 표면이 고열에 직접 노출되기 때문에 강관의 내화피복에 따라 내화성능에서 많은 차이가 예상된다. 본 연구에서는 내화피복 CFT기둥의 온도분포특성을 파악하기 위하여 내화피복의 종류와 두께 및 내화시간을 변수로 하여 실험을 실시하였다. 실험결과 가열온도를 기준으로 내화성능은 내화뿜칠, 내화페인트, 무내화의 순으로 나타났다. 가열시간-위치별 온도분포는 콘크리트부분은 완만한 증가를 보이고 있으나, 강관외부표면에 도달하면 급격한 온도의 증가를 보이는 것으로 나타났다.

콘크리트 구조체 내구성 향상을 위한 침투성 표면 보호재의 특성에 관한 실험적 연구 (An Experimental Study about Characteristics of Penetrating Surface Protection Materials to Promote Concrete Structure Durability)

  • 이정윤;조병영;김영근;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 추계 학술논문 발표대회
    • /
    • pp.93-96
    • /
    • 2005
  • Concrete has been considered as a semi-permanent structural material, because its excellent durability. Recently, durability decline of concrete construction by environmental pollution is becoming social problem. The durability of high durable structure is declined by carbonate, chloride permeation and deterioration of waterproof performance, etc. This study of penetrating surface protection materials evaluated about carbonation, chloride permeation, waterproof performance, and durability of abrasion, etc. It is profitable in durability that spread penetrating surface protection materials

  • PDF

선박의 해양 부식과 부식방지 장치 (Apparatus on Corrosion Protection and Marine Corrosion of Ship)

  • 김성종
    • 한국표면공학회지
    • /
    • 제44권3호
    • /
    • pp.105-116
    • /
    • 2011
  • Ships and offshore structures are exposed to harsh marine environments, and maintenance and repair are becoming increasingly important to the industry and the economy. The major corrosion phenomenons of metals and alloys in marine environment are pitting corrosion, stress corrosion cracking, crevice corrosion, fatigue corrosion, cavitation-erosion and etc. due to the effect of chloride ions and is quite serious. Methods of protection against corrosion can generally be divided into two groups: anodic protection and cathodic protection. Anodic protection is limited to the passivity characteristics of a material in its environment, while cathodic protection can apply methods such as sacrificial anode cathodic protection and impressed current cathodic protection. Sacrificial anode methods using Al and Zn alloys are widely used for marine structures and vessels intended for use in seawater. Impressed current cathodic protection methods are also widely used in marine environments, but tend to generate problems related to hydrogen embrittlement caused by hydrogen gas generation. Therefore, it is important to the proper maintenance and operation of the various corrosion protection systems for ship in the harsh marine environment.

표면처리가 장갑재료의 방호한계에 미치는 영향 (An Effect of surface treatment on a Protection Ballistic Limits in armor material)

  • 손세원;김희재;이두성;홍성희;유명재
    • 한국정밀공학회지
    • /
    • 제20권12호
    • /
    • pp.126-134
    • /
    • 2003
  • In order to investigate the effect of surface treatment in Aluminium alloy and Titanium alloy which are used to armor material during ballistic impact, a ballistic testing was conducted. Anodizing was used to achieve higher surface hardness of Aluminium alloy and Iron plating in PVD(Physical Vapor Deposition) method was used to achieve higher surface hardness of Titanium alloy. Surface hardness test were conducted using a Micro victor's hardness tester. Ballistic resistance of these materials was measured by protection ballistic limit(V-50), a statical velocity with 50% probability penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are respectfully observed from the results of V-50 test and Projectile Through Plates (PTP) test at velocities greater than V-50. PTP tests were conducted with 0$^{\circ}$obliquity at room temperature using 5.56mm ball projectile. V-50 tests were conducted with 0$^{\circ}$obliquity at room temperature with projectiles that were able to achieve near or complete penetration during PTP tests. Surface hardness, resistance to penetration. and penetration modes of surface treated alloy laminates are compared to those of surface non-treated alloy laminates. A high speed photography was used to analyze the dynamic perforation phenomena of the test materials.

Protection Effect of ZrO2 Coating Layer on LiCoO2 Thin Film

  • Lee, Hye-Jin;Nam, Sang-Cheol;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1483-1490
    • /
    • 2011
  • The protection effect of a $ZrO_2$ coating layer on a $LiCoO_2$ thin film was characterized. A wide and smooth $LiCoO_2$ thin film offers sufficient opportunity for careful observation of the reaction at the interface between cathode (coated and uncoated) and electrolyte. The formation of a $ZrO_2$ coating on a $LiCoO_2$ thin film was confirmed by secondary ion mass spectrometry. Scanning electron and atomic force microscopy were used to characterize the surface morphologies of coated and uncoated films before and after cycling. A $ZrO_2$-coated $LiCoO_2$ film showed a higher discharge capacity and rate capability than an uncoated film. This may be associated with a surface protection effect of the coating. The surface of a pristine film was damaged during cycling, whereas the coated film maintained a relatively clear surface under the same measurement conditions. This result clearly demonstrates the protection effect of a $ZrO_2$ coating on a $LiCoO_2$ thin film.