• Title/Summary/Keyword: surface problem

Search Result 3,052, Processing Time 0.027 seconds

A time-domain analysis for a nonlinear free-surface problem (시간영역에서의 비선형 자유표면파문제에 대한 수치해석)

  • Kyoung Jo Hyun;Bai Kwang June;Chung Sang Kwon;Kim Do Young
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.381-384
    • /
    • 2002
  • The free surface flow problem has been one of the most interesting and challenging topic in the area of the naval ship hydrodynamics and ocean engineering field. The problem has been treated mainly in the scope of the potential theory and its governing equation is well known Laplace equation. But in general, the exact solution to the problem is very difficult to obtain because of the nonlinearlity of the free surface boundary condition. Thus the linearized free surface problem has been treated often in the past. But as the computational power increases, there is a growing trend to solve the fully nonlinear free surface problem numerically. In the present study, a time-dependent finite element method is developed to solve the problem. The initial-boundary problem is formulated and replaced by an equivalent variational formulation. Specifically, the computations are made for a highly nonlinear flow phenomena behind a transom stern ship and a vertical strut piercing the free surface.

  • PDF

Construction of Branching Surface from 2-D Contours

  • Jha, Kailash
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • In the present work, an attempt has been made to construct branching surface from 2-D contours, which are given at different layers and may have branches. If a layer having more than one contour and corresponds to contour at adjacent layers, then it is termed as branching problem and approximated by adding additional points in between the layers. Firstly, the branching problem is converted to single contour case in which there is no branching at any layer and the final branching surface is obtained by skinning. Contours are constructed from the given input points at different layers by energy-based B-Spline approximation. 3-D curves are constructed after adding additional points into the contour points for all the layers having branching problem by using energy-based B-Spline formulation. Final 3-D surface is obtained by skinning 3-D curves and 2-D contours. There are three types of branching problems: (a) One-to-one, (b) One-to-many and (c) Many-to-many. Oneto-one problem has been done by plethora of researchers based on minimizations of twist and curvature and different tiling techniques. One-to-many problem is the one in which at least one plane must have more than one contour and have correspondence with the contour at adjacent layers. Many-to-many problem is stated as m contours at i-th layer and n contours at (i+1)th layer. This problem can be solved by combining one-to-many branching methodology. Branching problem is very important in CAD, medical imaging and geographical information system(GIS).

Computation of Section Curves, Reflection Characteristic Lines, and Asymptotic Curves for Visualization (가시화를 위한 단면곡선, 반사성질선, 점근선 생성 기법)

  • 남종호
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.4
    • /
    • pp.262-269
    • /
    • 2003
  • An approach to compute characteristic curves such as section curves, reflection characteristic lines, and asymptotic curves on a surface is introduced. Each problem is formulated as a surface-plane inter-section problem. A single-valued function that represents the characteristics of a problem constructs a property surface on parametric space. Using a contouring algorithm, the property surface is intersected with a horizontal plane. The solution of the intersection yields a series of points which are mapped into object space to become characteristic curves. The approach proposed in this paper eliminates the use of traditional searching methods or non-linear differential equation solvers. Since the contouring algorithm has been known to be very robust and rapid, most of the problems are solved efficiently in realtime for the purpose of visualization. This approach can be extended to any geometric problem, if used with an appropriate formulation.

Effects of Surface and Core Problems in Marriage on Dysfunctional Communication Behaviors in Marital Arguments : Focusing on Married Women (결혼생활의 표면적 문제와 핵심 문제가 부부싸움에서 사용하는 역기능적 의사소통 행동에 미치는 영향 : 기혼여성을 중심으로)

  • Kwon, Yoona;Kim, Deuksung
    • Journal of Families and Better Life
    • /
    • v.31 no.4
    • /
    • pp.1-14
    • /
    • 2013
  • The current study examined the ability to predict Gottman's four dysfunctional communication behaviors during marital arguments based on the level of surface and core problems in marriage. Core problems were composed of three factors: caring, power, and commitment problems. A self-report questionnaire was administered to 182 married women residing in Busan. The results of multiple regression analyses revealed that a woman's degree of criticism was predicted by surface and caring problems when controlling for the other variables. The degree of contempt was predicted by a commitment problem as well as surface and caring problems. Defensiveness was determined only by a commitment problem, while stonewalling was determined only by a power problem. Overall, these results showed the importance of core problems in understanding the causes of the four dysfunctional communication behaviors - especially contempt - and suggested that additional attention should be given to a commitment problem as a contributor to the expression of contempt and defensiveness.

An Evolutionary Algorithm for Minimizing the Assembly Time of surface Mounting Machines (표면실장기의 조립시간 최소화를 위한 진화 알고리즘)

  • Lee, Sung-Han;Lee, Young-Dae;Lee, Won-Sik;Lee, Beom-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.697-702
    • /
    • 2000
  • The paper considers the problem of improving the productivity of surface mounting in the printed circuit board(PCB) assembly line. This problem is generally divided into two problems ; real assignment problem and pick-and -place sequencing problem which are known to have no polynomial time algorithms. In the last ten years algorithm designers have been trying to solve them separately. However they need to be solved jointly because they are highly interrelated. This paper proposes an evolutionary algorithm which can consider the two problems jointly and thus yield a better solution. In order to evaluate the proposed algorithm computer simulation is performed on real-life surface mounting machines. The proposed algorithm is expected to reduce the assembly time of surface mounting machines and thus improve the productivity.

  • PDF

Organization of the optimal integrated environment for surface mounting machines (표면실장기계의 최적 통합환경 구성)

  • 이성한;홍지민;김대원;전명수;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1117-1122
    • /
    • 1993
  • The environment for surface mounting machines plays an important role in a throughput. An approach to organize the optimal integrated environment for surface mounting machines is presented to increase a throughput. An optimization problem is divided into a feeder setting problem and a task sequencing problem. Two algorithms for each problem are proposed. The feeder setting problems is optimized by an algorithm based on heuristic methods. The task sequencing problem is modeled as a TSP(Traveling salesman problem). An algorithm based on a heuristic tour-to-tour improvement method for TSP is proposed to optimize the task sequencing problem. A simulation is carried out to test developed algorithms.

  • PDF

A Study on the Automatic Fairing and Modeling System of Hull From (선형의 자동순정 및 모델링 시스템에 관한 연구)

  • 김동준
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.121-127
    • /
    • 2000
  • In this paper a new technique of inverse fairing problem for ship hull is proposed. Recently Lu solved the inverse fairing problem for automobile's body that was made by one surface element. In this system however hull surface is constructed by Gregory's composite surface interpolation method. So reflection line at boundary position is used as a tool of solving inverse problem in surface fairing. But the results are not good. The new concepts of Normal vector line and Constrained reflection line are introduced as an alternative tool. Energy minimization method for Normal Vector Line curve net and the inverse method for Constrained Reflection Line by using optimization technique are examined And the final lines from this proposed surface fairing method shows good fairness.

  • PDF

Integer Programming Approach to Line Optimization of Multiple Surface Mounters (정수계획법에 의한 다수 표면실장기의 라인 최적화)

  • Kim Kyung-Min;Park Tae-Hyoung
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.4
    • /
    • pp.46-54
    • /
    • 2006
  • We propose an optimization method for PCB assembly lines including multiple surface mounters. To increase the productivity of PCB assembly line, the component allocation, feeder assignment, and assembly sequence of each surface mounter should be optimized. The optimization Problem is formulated as an integer programming problem. We divide the overall problem into two hierarchical sub-problems: forward-path problem and backward-path problem. The clustering algorithm and branch-and-bound algorithm are applied to solve the forward-path problem. The assignment algorithm and connection algorithm are applied to solve the backward-path problem. Simulation results are presented to verify the usefulness of the proposed method.

  • PDF

A Surface Reconstruction Method from Contours Based on Dividing Virtual Belt (가상벨트 분할에 기반한 등고선으로부터의 표면재구성 방법)

  • Choi, Young-Kyu;Lee, Seung-Ha
    • The KIPS Transactions:PartB
    • /
    • v.14B no.6
    • /
    • pp.413-422
    • /
    • 2007
  • This paper addresses a new technique for constructing surface model from a set of wire-frame contours. The most difficult problem of this technique, called contour triangulation, arises when there are many branches on the surface, and causes lots of ambiguities in surface definition process. In this paper, the branching problem is reduced as the surface reconstruction from a set of virtual belts and virtual canyons. To tile the virtual belts, a divide-and-conquer strategy based tiling technique, called the BPA algorithm, is adopted. The virtual canyons are covered naturally by an iterative convex removal algorithm with addition of a center vertex for each branching surface. Compared with most of the previous works reducing the multiple branching problem into a set of tiling problems between contours, our method can handle the problem more easily by transforming it into more simple topology, the virtual belt and the virtual canyon. Furthermore, the proposed method does not involve any set of complicated criteria, and provides a simple and robust algorithm for surface triangulation. The result shows that our method works well even though there are many complicated branches in the object.

A Numerical Method for a High-Speed Ship with a Transom Stern

  • Kyoung Jo-Hyun;Bai Kwang-June
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.3
    • /
    • pp.8-17
    • /
    • 2004
  • A numerical method is developed for computing the free surface flows around a transom stern of a ship at a high Froude number. At high speed, the flow may be detached from the flat transom stern. In the limit of the high Froude number, the problem becomes a planning problem. In the present study, we make the finite-element computations for a transom stern flows around a wedge-shaped floating ship. The numerical method is based on the Hamilton's principle. The problem is formulated as an initial value problem with nonlinear free surface conditions. In the numerical procedures, the domain was discretized into a set of finite elements and the numerical quadrature was used for the functional equation. The time integrations of the nonlinear free surface condition are made iteratively at each time step. A set of large algebraic equations is solved by GMRES(Generalized Minimal RESidual, Saad and Schultz 1986) method which is proven very efficient. The computed results are compared with previous numerical results obtained by others.