• Title/Summary/Keyword: surface pressures

Search Result 550, Processing Time 0.021 seconds

Exterior Acoustic Holography Reconstruction of a Tuning Fork Using Inverse Non-singular BEM

  • Jarng, Soon-Suck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1E
    • /
    • pp.11-18
    • /
    • 2003
  • Non-singular boundary element method (BEM) codes are developed in acoustics application. The BEM code is then used to calculate unknown boundary surface normal displacements and surface pressures from known exterior near field pressures. And then the calculated surface normal displacements and surface pressures are again applied to the BEM in forward in order to calculate reconstructed field pressures. The initial exterior near field pressures are very well agreed with the later reconstructed field pressures. Only the same number of boundary surface nodes (1178) are used for the initial exterior pressures which are at first calculated by Finite Element Method (FEM) and BEM. Pseudo-inverse technique is, used for the calculation of the unknown boundary surface normal displacements. The structural object is a tuning fork with 128.4 ㎐ resonant. The boundary element is a quadratic hexahedral element (eight nodes per element).

Exterior Acoustic Holography Reconstruction of a Tuning Fork using Inverse Non-singular BEM (역 비고유치 BEM을 사용한 소리 굽쇠의 외부 음향 홀로그래픽 재현)

  • Jarng, Soon-Suck;Lee, Je-Hyeong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.306-311
    • /
    • 2002
  • Non-singular boundary element method (BEM) codes are developed in acoustics application. The BEM code is then used to calculate unknown boundary surface normal displacements and surface pressures from known exterior near Held pressures. And then the calculated surface normal displacements and surface pressures are again applied to the BEM in forward in order to calculate reconstructed field pressures. The initial exterior near field pressures are very well agreed with the later reconstructed field pressures. Only the same number of boundary surface nodes (1178) are used far the initial exterior pressures which are initially calculated by Finite Element Method (FEM) and BEM. Pseudo-inverse technique is used for the calculation of the unknown boundary surface normal displacements. The structural object is a tuning fork with 128.4 Hz resonant. The boundary element is a quadratic hexahedral element (eight nodes per element).

  • PDF

Exterior Acoustic Holography Reconstruction of a Tuning Fork using Inverse Non-singular BEM (역 비고유치 BEM을 사용한 소리 굽쇠의 외부 음향 홀로그래픽 재현)

  • Jarng, Soon-Suck;Lee, Je-Hyeong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.335.2-335
    • /
    • 2002
  • Non-singular boundary element method (BEM) codes are developed in acoustics application. The BEM code is then used to calculate unknown boundary surface normal displacements and surface pressures from known exterior near field pressures. And then the calculated surface normal displacements and surface pressures are again applied to the BEM in forward in order to calculate reconstructed field pressures. (omitted)

  • PDF

Turbulence effects on surface pressures of rectangular cylinders

  • Li, Q.S.;Melbourne, W.H.
    • Wind and Structures
    • /
    • v.2 no.4
    • /
    • pp.253-266
    • /
    • 1999
  • This paper presents the effects of free-stream turbulence on streamwise surface pressure fluctuations on two-dimensional rectangular cylinders. Particular attention is given to possible effects of turbulence integral scale on fluctuation and peak pressures. The mean, standard deviation, peak pressure coefficients, spectra and cross-correlation of fluctuating pressures were measured to investigate the nature of the separation and reattachment phenomenon in turbulent flows over a wide range of turbulence intensity and integral scale.

Rectangular prism pressure coherence by modified Morlet continuous wavelet transform

  • Le, Thai-Hoa;Caracoglia, Luca
    • Wind and Structures
    • /
    • v.20 no.5
    • /
    • pp.661-682
    • /
    • 2015
  • This study investigates the use of time-frequency coherence analysis for detecting and evaluating coherent "structures" of surface pressures and wind turbulence components, simultaneously on the time-frequency plane. The continuous wavelet transform-based coherence is employed in this time-frequency examination since it enables multi-resolution analysis of non-stationary signals. The wavelet coherence quantity is used to identify highly coherent "events" and the "coherent structure" of both wind turbulence components and surface pressures on rectangular prisms, which are measured experimentally. The study also examines, by proposing a "modified" complex Morlet wavelet function, the influence of the time-frequency resolution and wavelet parameters (i.e., central frequency and bandwidth) on the wavelet coherence of the surface pressures. It is found that the time-frequency resolution may significantly affect the accuracy of the time-frequency coherence; the selection of the central frequency in the modified complex Morlet wavelet is the key parameter for the time-frequency resolution analysis. Furthermore, the concepts of time-averaged wavelet coherence and wavelet coherence ridge are used to better investigate the time-frequency coherence, the coherently dominant events and the time-varying coherence distribution. Experimental data derived from physical measurements of turbulent flow and surface pressures on rectangular prisms with slenderness ratios B/D=1:1 and B/D=5:1, are analyzed.

Effect of Inflatable Standing Surface With Different Levels of Air Pressure on Leg Muscle Activity (공기압 차이에 따른 불안정지지면이 다리 근활성도에 미치는 영향)

  • Park, Chi-Bok;Kim, Yong-Nam;Kim, Yong-Seong;Cho, Woon-Su;Jin, Hee-Kyung
    • Physical Therapy Korea
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2013
  • The purpose of this study was to determine the effect of the changes that occur in the leg muscle activity of unstable surface with different levels of air pressures. Three groups of college students have been placed randomly on unstable surfaces with different air pressures at group 1.0 psi ($n_1$=36), group 1.4 psi ($n_2$=40), and group 1.8 psi ($n_3$=40). Using surface electromyography, the recruitment of the tibialis anterior, peroneus longus, and the gastrocnemius was measured. Maximal voluntary isometric contraction was measured at the different air pressures based on the manual muscle test, then normalizing the value to %maximal voluntary isometric contraction (%MVIC). The tibialis anterior muscle activity was significant change from the unstable surface with difference levels of air pressures between group 1.0 psi and 1.8 psi and between group 1.4 psi and 1.8 psi. peroneus longus muscle activity was significant changes in muscle activity occurred between 1.0 psi and 1.4 psi group and between 1.0 psi and 1.8 psi group. Gastrocnemius muscle activity was significant change in muscle activity occurred between 1.0 psi and 1.4 psi group and between 1.0 psi and 1.8 psi group. In conclusion it identify that 1.0 psi group is most effective on muscle activity than the other groups. These suggest that the rehabilitation or strengthening of patients with ankle injuries, balance exercise with low air pressure like 1.0 psi can be more effective.

Surface Tension of Molten Ag-Sn and Au-Cu Alloys at Different Oxygen Partial Pressures (다양한 산소분압에 따른 용융 Ag-Sn 및 Ag-Cu 합금의 표면장력)

  • Min, Soon-Ki;Lee, Joon-Ho
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.13-17
    • /
    • 2009
  • A semi-empirical method to estimate the surface tension of molten alloys at different oxygen partial pressures is suggested in this study. The surface tension of molten Ag-Sn and Ag-Cu alloys were calculated using the Butler equation with the surface tension value of pure substance at a given oxygen partial pressure. The oxygen partial pressure ranges were $2.86{\times}10^{-12}$$1.24{\times}10^{-9}$ Pa for the Ag-Sn system and $2.27{\times}10^{-11}$$5.68{\times}10^{-4}$ Pa for the Ag-Cu system. In this calculation, the interactions of the adsorbed oxygen with other metallic constituents were ignored. The calculated results of the Ag-Sn alloys were in reasonable accordance with the experimental data within a difference of 8%. For the Ag-Cu alloy system at a higher oxygen partial pressure, the surface tension initially decreased but showed a minimum at $X_{Ag}$ = 0.05 to increase as the silver content increased. This behavior appears to be related to the oxygen adsorption and the corresponding surface segregation of the constituent with a lower surface tension. Nevertheless, the calculated results of the Ag-Cu alloys with the present model were in good agreement with the experimental data within a difference of 10%.

Characteristics of Negative Peak Wind Pressure acting on Tall Buildings with Step on Wall Surface

  • Yoshida, Akihito;Masuyama, Yuka;Katsumura, Akira
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.4
    • /
    • pp.283-290
    • /
    • 2019
  • Corner cut, corner chamfered or a building shape change are adopted in the design of tall buildings to achieve aerodynamic superiority as well as response reduction. Kikuchi et.al pointed out that large negative peak external pressures can appear near the inside corner of set-back low rise buildings. It is therefore necessary to pay attention to facade design around steps in building surfaces. Peak wind pressures for corner cut or corner chamfered configurations are given in the AIJ code. However, they cannot be applied where there are many variations of vertical and horizontal steps. There has been no previous systematic research on peak wind pressures around steps in building surfaces. In this study, detailed phenomenon of peak wind pressures around steps in buildings are investigated focusing on vertical and horizontal distances from the building's corner.

Investigation of surface pressures on CAARC tall building concerning effects of turbulence

  • Li, Yonggui;Yan, Jiahui;Chen, Xinzhong;Li, Qiusheng;Li, Yi
    • Wind and Structures
    • /
    • v.31 no.4
    • /
    • pp.287-298
    • /
    • 2020
  • This paper presents an experimental investigation on the surface pressures on the CAARC standard tall building model concerning the effects of freestream turbulence. Two groups of incidence turbulence are generated in the wind tunnel experiment. The first group has an approximately constant turbulence intensity of 10.3% but different turbulence integral scale varying from 0.141 m to 0.599 m or from 0.93 to 5.88 in terms of scale ratio (turbulence integral scale to building dimension). The second group presents similar turbulence integral scale but different turbulence intensity ranging from 7.2% to 13.5%. The experimental results show that the mean pressure coefficients on about half of the axial length of the side faces near the leading edge slightly decrease as the turbulence integral scale ratio that is larger than 4.25 increases, but respond markedly to the changes in turbulence intensity. The root-mean-square (RMS) and peak pressure coefficients depend on both turbulence integral scale and intensity. The RMS pressure coefficients increase with turbulence integral scale and intensity. As the turbulence integral scale increases from 0.141 m to 0.599 m, the mean peak pressure coefficient increases by 7%, 20% and 32% at most on the windward, side faces and leeward of the building model, respectively. As the turbulence intensity increases from 7.2% to 13.5%, the mean value of peak pressure coefficient increases by 47%, 69% and 23% at most on windward, side faces and leeward, respectively. The values of cross-correlations of fluctuating pressures increase as the turbulence integral scale increases, but decrease as turbulence intensity increases in most cases.