• Title/Summary/Keyword: surface pressure measurement

Search Result 482, Processing Time 0.027 seconds

Effects of Deposition Pressure on the Phase Formation and Electrical Properties of BiFeO3 Films Deposited by Sputtering

  • Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.19 no.11
    • /
    • pp.601-606
    • /
    • 2009
  • $BiFeO_3$ (BFO) thin films were prepared on $Pt/TiO_2/Si$ substrate by r.f. magnetron sputtering. The effects of deposition pressure on electrical properties were investigated using measurement of dielectric properties, leakage current and polarization. When BFO targets were prepared, Fe atoms were substituted with Mn 0.05% to increase electrical resistivity of films. (Fe+Mn)/Bi ratio of BFO thin films increases with increasing partial pressure of $O_2$ gas. The deposited films showed the only BFO phase at 10 mTorr, the coexistence of BFO and $Bi_2O_3$ phase at 30-50 mTorr, and the only $Bi_2O_3$ phase at 70 mTorr. The crystallinity of BFO films was reduced due to the higher Bi contents and the decrease of surface mobility of atoms at high temperature. The porosity and surface roughness of films increased with the increase of the deposition pressure. The films deposited at high pressure showed low dielectric constant and high leakage current. The dielectric constant of films deposited at various deposition pressures was 84${\sim}$153 at 1 kHz. The leakage current density of the films deposited at 10${\sim}$70 mTorr was about $7{\times}10.6{\sim}1.5{\times}10.2A/cm^2$ at 100 kV/cm. The leakage current was found to be closely related to the morphology and composition of the BFO films. BFO films showed poor P-E hysteresis loops due to high leakage current.

Influence of the Mars atmosphere model on aerodynamics of an entry capsule

  • Zuppardi, Gennaro
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.3
    • /
    • pp.239-256
    • /
    • 2019
  • This study develops a dual purpose: i) evaluating the effects of two different Mars atmosphere models (NASA Glenn and GRAM-2001) on aerodynamics of a capsule (Pathfinder) entering the Mars atmosphere, ii) verifying the feasibility of evaluating the ambient density and pressure by means of the methods by McLaughlin and Cassanto, respectively and therefore to re-build the values provided by the models. The method by McLaughlin relies on the evaluation of the capsule drag coefficient, the method by Cassanto relies on the measurement of pressure at a point on the capsule surface in aerodynamic shadow. The study has been carried out computationally by means of: i) a code integrating the equations of dynamics of the capsule for the computation of the entry trajectory, ii) a DSMC code for the solution of the flow field around the capsule in the altitude interval 50-100 km. The models show consistent differences at altitudes higher than about 40 km. It seems that the GRAM-2001 model is more reliable than the NASA Glenn model. In fact, the NASA Glenn model produces, at high altitude, temperatures that seem to be too low compared with those from the GRAM-2001 model and correspondingly very different aerodynamic conditions in terms of Mach, Reynolds and Knudsen numbers. This produces pretty different capsule drag coefficients by the two models as well as pressure on its surface, making not feasible neither the method by McLaughlin nor that by Cassanto, until a single, reliable model of the Mars atmosphere is not established. The present study verified that the implementation of the Cassanto method in Mars atmosphere should rely (such as it is currently) on pressure obtained experimentally in ground facilities.

A Study on the Maxwell Displacement Current in Monolayer of L-α-Dilauryl phosphatidylcholine on the Water Surface (수면상에서 L-α-Dilauryl phosphatidylcholine 단분자층의 맥스웰 변위전류에 관한 연구)

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.522-527
    • /
    • 2015
  • We applied a displacement current measurement technique for the study of L-${\alpha}$-dilauryl phosphatidylcholine (DLPC) monolayer. Displacement current was generated at the DLPC monolayer on the water surface, while induced by compression and expansion of the monolayer. Generation of Maxwell displacement current (MDC) was observed when surface areas per DLPC molecule were approximately $200{\AA}^2$ and $40{\AA}^2$. We investigated MDC for monolayer compression cycles, and found that MDC reached the maximum at the molecular area, which was measured right before surface pressure began to increase during compression cycles. The monolayer surface morphology of Langmuir-Blodgett (LB) films was characterized using atomic force microscope (AFM). As a result, we measured the result from the microscopic properties shown in the AFM images of LB films that molecules in the monolayer were in good orientations and the thickness of the monolayer ranged from 5 to 10 nm.

Creep Damage Evaluation of High-Temperature Pipeline in Power Plant by Using Ultrasonic Velocity Measurement and Hardness Test (초음파 음속 및 경도법에 의한 발전소 고온배관재의 크리프 손상평가)

  • Hur, Kwang-Beom;Yoo, Keun-Bong;Cho, Yong-Sang;Lee, Sang-Guk
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.92-99
    • /
    • 1999
  • High temperature and pressure materials in power plant are degraded by creep damage, if they are exposed to constant loads for long times, which occurs in load bearing structures of pressurized components operationg at elevated temperatures. Many conventional measurement techniques such as replica method, electric resistance method, and hardness test method for measuring creep damgage have been used. So far, the replica method is mainly used for the inspection of high temperature and pressure components. This technique is, however, restricted to applications at the surface of the testpieces and cannot be used to material inside. In this paper, ultrasonic evaluation for the detection of creep damage in the form of cavaties on grain boundaries or intergranular microcracks were carried out. And the absolute measuring method of quantitative ultrasonic velocity technique for Cr-Mo material degradation was analyzed. As a result of ultrasonic tests for crept for specimens, we founded that the sound velocity was decreased as increase of creep life fraction(${phi}c$) and also, confirmed that hardness was decreased as increase of creep life fraction(${phi}c$).

  • PDF

A Study of the Influence of the Injection Location of Supersonic Sweeping Jet for the Control of Shock-Induced Separation (경사충격파 박리유동 제어를 위한 초음속 진동제트 분출위치의 영향성 연구)

  • Park, Sang-Hoon;Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.747-754
    • /
    • 2022
  • An experimental study was carried out to control a shock-induced boundary layer separation by utilizing the supersonic sweeping jet from the fluidic oscillator. High-speed schlieren, surface flow visualization, wall pressure measurement and precise Pitot tube measurement were applied to observe the influences of the location and the supply pressure of the fluidic oscillator on the characteristics of the oblique-shock-induced boundary layer separation. The characteristics of the separation control by the present supersonic fluidic oscillator was quantitatively analyzed by comparing with a conventional control method utilizing an air-jet vortex generator.

Micro Forming of Bulk Metallic Glass using the Deformation Behavior in the Supercooled Liquid Region (과냉각 액체 영역에서의 변형거동을 이용한 벌크 비정질 합금의 미세성형 기술 개발)

  • 옥명렬;서진유;홍경태
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 2004
  • Recently, various bulk metallic glasses (BMG's) having good mechanical and chemical properties were developed. BMG's can easily be deformed in the supercooled liquid region, via viscous flow mechanism. By using the viscous flow, the very low pressure is needed to deform the materials. In this study, we investigated the structural transition and deformation behavior of Vitreloy 1 (Zr/sub 41.2/Ti/sub 13.8/Cu/sub 12.5/Ni/sub 10/Be/sub 22.5/) using TMA and DSC. We applied the results to the micro forming process. The forming condition was chosen based on the viscosity data from TMA, and Si wafer with micro patterns on the surface was used as a forming die. The deformed surface was analyzed by SEM and 3D Surface Profiling System. The alloy showed good replication of the patterns. Quantitative measurement of roughness was useful to evaluate the replication. Surface condition of the deformed surface was determined by the initial surface condition.

System Configuration of Ultrasonic Nuclear Fuel Cleaner and Quantitative Weight Measurement of Removed CRUD (초음파 핵연료 세정장비의 시스템 구성과 제거된 크러드의 정량적 무게 측정법)

  • Jung Cheol Shin;Hak Yun Lee;Un Hak Seong;Yeong Jong Joo;Yong Chan Kim;Wook Jin Han
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Crud is a corrosion deposit that forms in equipments and piping of nuclear reactor's primary systems. When crud circulates through the reactor's primary system coolant and adheres to the surface of the nuclear fuel cladding tube, it can lead to the Axial Offset Anomaly (AOA) phenomenon. This occurrence is known to potentially reduce the output of a nuclear power plant or to necessitate an early shutdown. Consequently, worldwide nuclear power plants have employed ultrasonic cleaning methods since 2000 to mitigate crud deposition, ensuring stable operation and economic efficiency. This paper details the system configuration of ultrasonic nuclear fuel cleaning equipment, outlining the function of each component. The objective is to contribute to the local domestic production of ultrasonic nuclear fuel cleaning equipment. Additionally, the paper introduces a method for accurately measuring the weight of removed crud, a crucial factor in assessing cleaning effectiveness and providing input data for the BOA code used in core safety evaluations. Accurate measurement of highly radioactive filters containing crud is essential, and weighing them underwater is a common practice. However, the buoyancy effect during underwater weighing may lead to an overestimation of the collected crud's weight. To address this issue, the paper proposes a formula correcting for buoyancy errors, enhancing measurement accuracy. This improved weight measurement method, accounting for buoyancy effects in water, is expected to facilitate the quantitative assessment of filter weights generated during chemical decontamination and system operations in nuclear power plants.

Earth pressure of vertical shaft considering arching effect in layered soils (다층지반에서의 아칭현상에 의한 수직갱 토압)

  • Lee, In-Mo;Moon, Hong-Pyo;Lee, Dea-Su;Kim, Kyung-Ryeol;Cho, Man-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.49-62
    • /
    • 2007
  • A new earth pressure equation acting on the vertical shafts in cohesionless soils has been proposed by modifying the equations proposed by others. In order to verify the modified equation, model tests which can control uniform wall displacement with depth to radial direction were conducted. Model tests were performed with three different wall friction angles and two different relative densities. The measured values were larger than estimated values when assuming $\lambda=1$ ; smaller than those when assuming $\lambda=1-sin\phi$. The parameter, $\lambda$ is the ratio of tangential stress to vertical stress and is the most critical value in proposed equation. A method which can estimate the earth pressure on vertical shafts in layered soils is also proposed by reasonably assuming the failure surface of layered soils and using the modified equation. In order to verify the proposed method, in-situ measurement data have been collected from the three in-situ vertical shafts installed in layered soils. Most of earth pressures converted from measured data match reasonably well with estimated values using proposed method.

  • PDF

Adhesive Polyurethane-based Capacitive Electrode for Patch-type Wearable Electrocardiogram Measurement System (패치형 웨어러블 심전도 측정 시스템을 위한 접착성 폴리우레탄 기반의 용량성 전극)

  • Lee, Jeong Su;Lee, Won Kyu;Lim, Yong Gyu;Park, Kwang Suk
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.203-210
    • /
    • 2014
  • Wearable medical device has been a resurgence of interest thanks to the development of technology and propagation of smart phone in recent years. Various types of wearable devices have been introduced and available in market. Capacitive coupled electrode which measures electrocardiogram over cloth is able to be applied wearable device. In previous approaches of capacitive electrode, they need proper pressure for stable contact of the electrode to body surface. However, wearable device that gives pressure on body surface is not suitable for long-term monitoring. In this study, we proposed adhesive polyurethane-based capacitive electrode for patch-type wearable electrocardiogram (ECG) monitoring device. Self-adhesive polyurethane make the electrode and whole system be adhered to the surface of skin without any pressure. The patch-type system is consisted of analog filter, analog-to-digital converter and wireless transmission module and designed to be attached on the body as a patch. To validate the feasibility of the developed system, we measured ECG signal in stable and active state and extracted heart rate. Therefore, we observed skin response after long-term attachment for biocompatibility of the adhesive polyurethane and adhesive strength of it. The result shows the possibility of applying the developed system for ECG monitoring in real-life.

Preparation of highly hydrophobic PVDF hollow fiber composite membrane with lotus leaf-like surface and its desalination properties

  • Li, Hongbin;Zi, Xingchen;Shi, Wenying;Qin, Longwei;Zhang, Haixia;Qin, Xiaohong
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.287-298
    • /
    • 2019
  • Lotus leaf has a special dual micro and nano surface structure which gives its highly hydrophobic surface characteristics and so-called self cleaning effect. In order to endow PVDF hollow fiber membrane with this special structure and improve the hydrophobicity of membrane surface, PVDF hollow fiber composite membranes was obtained through the immersion coating of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) dilute solution on the outside surface of PVDF support membrane. The prepared PVDF composite membranes were used in the vacuum membrane distillation (VMD) for the desalination. The effects of PVDF-HFP dilute solution concentration in the dope solution and coating time on VMD separation performance was studied. Membranes were characterized by SEM, WCA measurement, porosity, and liquid entry pressure of water. VMD test was carried out using $35g{\cdot}L^{-1}$ NaCl aqueous solution as the feed solution at feed temperature of $30^{\circ}C$ and the permeate pressure of 31.3 kPa. The vapour flux reached a maximum when PVDF-HFP concentration in the dilute solution was 5 wt% and the coating time was kept in the range of 10-60 s. This was attributed to the well configuration of micro-nano rods which was similar with the dual micro-nano structure on the lotus leaf. Compared with the original PVDF membrane, the salt rejection can be well maintained which was greater than 99.99 % meanwhile permeation water conductivity was kept at a low value of $7-9{\mu}S{\cdot}cm^{-1}$ during the continuous testing for 360 h.